MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat0dimcrng Structured version   Visualization version   GIF version

Theorem mat0dimcrng 20276
Description: The algebra of matrices with dimension 0 (over an arbitrary ring!) is a commutative ring. (Contributed by AV, 10-Aug-2019.)
Hypothesis
Ref Expression
mat0dim.a 𝐴 = (∅ Mat 𝑅)
Assertion
Ref Expression
mat0dimcrng (𝑅 ∈ Ring → 𝐴 ∈ CRing)

Proof of Theorem mat0dimcrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0fin 8188 . . 3 ∅ ∈ Fin
2 mat0dim.a . . . 4 𝐴 = (∅ Mat 𝑅)
32matring 20249 . . 3 ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
41, 3mpan 706 . 2 (𝑅 ∈ Ring → 𝐴 ∈ Ring)
5 mat0dimbas0 20272 . . 3 (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅})
62eqcomi 2631 . . . . . 6 (∅ Mat 𝑅) = 𝐴
76fveq2i 6194 . . . . 5 (Base‘(∅ Mat 𝑅)) = (Base‘𝐴)
87eqeq1i 2627 . . . 4 ((Base‘(∅ Mat 𝑅)) = {∅} ↔ (Base‘𝐴) = {∅})
9 eqidd 2623 . . . . . . 7 (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → (∅(.r𝐴)∅) = (∅(.r𝐴)∅))
10 0ex 4790 . . . . . . . . 9 ∅ ∈ V
11 oveq1 6657 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥(.r𝐴)𝑦) = (∅(.r𝐴)𝑦))
12 oveq2 6658 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑦(.r𝐴)𝑥) = (𝑦(.r𝐴)∅))
1311, 12eqeq12d 2637 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ (∅(.r𝐴)𝑦) = (𝑦(.r𝐴)∅)))
1413ralbidv 2986 . . . . . . . . 9 (𝑥 = ∅ → (∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ ∀𝑦 ∈ {∅} (∅(.r𝐴)𝑦) = (𝑦(.r𝐴)∅)))
1510, 14ralsn 4222 . . . . . . . 8 (∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ ∀𝑦 ∈ {∅} (∅(.r𝐴)𝑦) = (𝑦(.r𝐴)∅))
16 oveq2 6658 . . . . . . . . . 10 (𝑦 = ∅ → (∅(.r𝐴)𝑦) = (∅(.r𝐴)∅))
17 oveq1 6657 . . . . . . . . . 10 (𝑦 = ∅ → (𝑦(.r𝐴)∅) = (∅(.r𝐴)∅))
1816, 17eqeq12d 2637 . . . . . . . . 9 (𝑦 = ∅ → ((∅(.r𝐴)𝑦) = (𝑦(.r𝐴)∅) ↔ (∅(.r𝐴)∅) = (∅(.r𝐴)∅)))
1910, 18ralsn 4222 . . . . . . . 8 (∀𝑦 ∈ {∅} (∅(.r𝐴)𝑦) = (𝑦(.r𝐴)∅) ↔ (∅(.r𝐴)∅) = (∅(.r𝐴)∅))
2015, 19bitri 264 . . . . . . 7 (∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ (∅(.r𝐴)∅) = (∅(.r𝐴)∅))
219, 20sylibr 224 . . . . . 6 (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
22 raleq 3138 . . . . . . . 8 ((Base‘𝐴) = {∅} → (∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ ∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
2322raleqbi1dv 3146 . . . . . . 7 ((Base‘𝐴) = {∅} → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ ∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
2423adantr 481 . . . . . 6 (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ ∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
2521, 24mpbird 247 . . . . 5 (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
2625ex 450 . . . 4 ((Base‘𝐴) = {∅} → (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
278, 26sylbi 207 . . 3 ((Base‘(∅ Mat 𝑅)) = {∅} → (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
285, 27mpcom 38 . 2 (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
29 eqid 2622 . . 3 (Base‘𝐴) = (Base‘𝐴)
30 eqid 2622 . . 3 (.r𝐴) = (.r𝐴)
3129, 30iscrng2 18563 . 2 (𝐴 ∈ CRing ↔ (𝐴 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
324, 28, 31sylanbrc 698 1 (𝑅 ∈ Ring → 𝐴 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  c0 3915  {csn 4177  cfv 5888  (class class class)co 6650  Fincfn 7955  Basecbs 15857  .rcmulr 15942  Ringcrg 18547  CRingccrg 18548   Mat cmat 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mamu 20190  df-mat 20214
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator