MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matring Structured version   Visualization version   GIF version

Theorem matring 20249
Description: Existence of the matrix ring, see also the statement in [Lang] p. 504: "For a given integer n > 0 the set of square n x n matrices form a ring." (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
matassa.a 𝐴 = (𝑁 Mat 𝑅)
Assertion
Ref Expression
matring ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)

Proof of Theorem matring
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matassa.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2622 . . 3 (Base‘𝑅) = (Base‘𝑅)
31, 2matbas2 20227 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
4 eqidd 2623 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g𝐴) = (+g𝐴))
5 eqid 2622 . . 3 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
61, 5matmulr 20244 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
71matgrp 20236 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
8 simp1r 1086 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) → 𝑅 ∈ Ring)
9 simp1l 1085 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) → 𝑁 ∈ Fin)
10 simp2 1062 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) → 𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
11 simp3 1063 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) → 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
122, 8, 5, 9, 9, 9, 10, 11mamucl 20207 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
13 simplr 792 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → 𝑅 ∈ Ring)
14 simpll 790 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → 𝑁 ∈ Fin)
15 simpr1 1067 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → 𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
16 simpr2 1068 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
17 simpr3 1069 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
182, 13, 14, 14, 14, 14, 15, 16, 17, 5, 5, 5, 5mamuass 20208 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
19 eqid 2622 . . . 4 (+g𝑅) = (+g𝑅)
202, 13, 5, 14, 14, 14, 19, 15, 16, 17mamudir 20210 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦𝑓 (+g𝑅)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∘𝑓 (+g𝑅)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
213adantr 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
2216, 21eleqtrd 2703 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → 𝑦 ∈ (Base‘𝐴))
2317, 21eleqtrd 2703 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → 𝑧 ∈ (Base‘𝐴))
24 eqid 2622 . . . . . 6 (Base‘𝐴) = (Base‘𝐴)
25 eqid 2622 . . . . . 6 (+g𝐴) = (+g𝐴)
261, 24, 25, 19matplusg2 20233 . . . . 5 ((𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑦(+g𝐴)𝑧) = (𝑦𝑓 (+g𝑅)𝑧))
2722, 23, 26syl2anc 693 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → (𝑦(+g𝐴)𝑧) = (𝑦𝑓 (+g𝑅)𝑧))
2827oveq2d 6666 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦(+g𝐴)𝑧)) = (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦𝑓 (+g𝑅)𝑧)))
292, 13, 5, 14, 14, 14, 15, 16mamucl 20207 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
3029, 21eleqtrd 2703 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ (Base‘𝐴))
312, 13, 5, 14, 14, 14, 15, 17mamucl 20207 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
3231, 21eleqtrd 2703 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴))
331, 24, 25, 19matplusg2 20233 . . . 4 (((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ (Base‘𝐴) ∧ (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴)) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(+g𝐴)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∘𝑓 (+g𝑅)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
3430, 32, 33syl2anc 693 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(+g𝐴)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∘𝑓 (+g𝑅)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
3520, 28, 343eqtr4d 2666 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦(+g𝐴)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(+g𝐴)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
362, 13, 5, 14, 14, 14, 19, 15, 16, 17mamudi 20209 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → ((𝑥𝑓 (+g𝑅)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∘𝑓 (+g𝑅)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
3715, 21eleqtrd 2703 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → 𝑥 ∈ (Base‘𝐴))
381, 24, 25, 19matplusg2 20233 . . . . 5 ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(+g𝐴)𝑦) = (𝑥𝑓 (+g𝑅)𝑦))
3937, 22, 38syl2anc 693 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → (𝑥(+g𝐴)𝑦) = (𝑥𝑓 (+g𝑅)𝑦))
4039oveq1d 6665 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → ((𝑥(+g𝐴)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = ((𝑥𝑓 (+g𝑅)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧))
412, 13, 5, 14, 14, 14, 16, 17mamucl 20207 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → (𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
4241, 21eleqtrd 2703 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → (𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴))
431, 24, 25, 19matplusg2 20233 . . . 4 (((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴) ∧ (𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴)) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)(+g𝐴)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∘𝑓 (+g𝑅)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
4432, 42, 43syl2anc 693 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)(+g𝐴)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∘𝑓 (+g𝑅)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
4536, 40, 443eqtr4d 2666 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → ((𝑥(+g𝐴)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)(+g𝐴)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
46 simpr 477 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
47 eqid 2622 . . 3 (1r𝑅) = (1r𝑅)
48 eqid 2622 . . 3 (0g𝑅) = (0g𝑅)
49 eqid 2622 . . 3 (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅)))
50 simpl 473 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
512, 46, 47, 48, 49, 50mamumat1cl 20245 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
52 simplr 792 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) → 𝑅 ∈ Ring)
53 simpll 790 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) → 𝑁 ∈ Fin)
54 simpr 477 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) → 𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
552, 52, 47, 48, 49, 53, 53, 5, 54mamulid 20247 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅)))(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑥) = 𝑥)
562, 52, 47, 48, 49, 53, 53, 5, 54mamurid 20248 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅)))) = 𝑥)
573, 4, 6, 7, 12, 18, 35, 45, 51, 55, 56isringd 18585 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  ifcif 4086  cotp 4185   × cxp 5112  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑓 cof 6895  𝑚 cmap 7857  Fincfn 7955  Basecbs 15857  +gcplusg 15941  0gc0g 16100  1rcur 18501  Ringcrg 18547   maMul cmmul 20189   Mat cmat 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mamu 20190  df-mat 20214
This theorem is referenced by:  matassa  20250  mat1  20253  mat1bas  20255  matsc  20256  mat0dim0  20273  mat0dimid  20274  mat0dimcrng  20276  mat1dimcrng  20283  mat1ghm  20289  mat1mhm  20290  mat1rhm  20291  mat1rngiso  20292  dmatid  20301  dmatsgrp  20305  dmatsrng  20307  scmatscmide  20313  scmatscmiddistr  20314  scmatmats  20317  scmatscm  20319  scmatid  20320  scmataddcl  20322  scmatsubcl  20323  scmatmulcl  20324  scmatsgrp  20325  scmatsrng  20326  smatvscl  20330  scmatrhmcl  20334  scmatf1  20337  scmatmhm  20340  mdet1  20407  mdetunilem8  20425  mdetuni0  20427  mdetmul  20429  madulid  20451  matunit  20484  slesolinv  20486  slesolinvbi  20487  slesolex  20488  pmatring  20498  mat2pmatghm  20535  mat2pmatmul  20536  mat2pmat1  20537  mat2pmatmhm  20538  mat2pmatrhm  20539  m2cpmrhm  20551  m2pmfzgsumcl  20553  m2cpmrngiso  20563  m2cpminv0  20566  decpmataa0  20573  decpmatmul  20577  monmatcollpw  20584  pmatcollpw3fi1lem1  20591  pmatcollpw3fi1lem2  20592  pm2mpf1lem  20599  pm2mpcl  20602  pm2mpf1  20604  pm2mpcoe1  20605  idpm2idmp  20606  mp2pm2mplem5  20615  mp2pm2mp  20616  pm2mpghmlem2  20617  pm2mpghmlem1  20618  pm2mpghm  20621  pm2mpmhmlem1  20623  pm2mpmhmlem2  20624  pm2mpmhm  20625  pm2mprhm  20626  pm2mprngiso  20627  monmat2matmon  20629  pm2mp  20630  chpmat0d  20639  chpmat1dlem  20640  chpmat1d  20641  chp0mat  20651  chpidmat  20652  cpmidgsumm2pm  20674  cpmidpmatlem2  20676  cpmidpmatlem3  20677  cpmadugsumlemB  20679  cpmadugsumlemC  20680  cayhamlem2  20689  chcoeffeqlem  20690  cayhamlem4  20693  matunitlindflem2  33406  matunitlindf  33407
  Copyright terms: Public domain W3C validator