| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat1dimscm | Structured version Visualization version Unicode version | ||
| Description: The scalar multiplication in the algebra of matrices with dimension 1. (Contributed by AV, 16-Aug-2019.) |
| Ref | Expression |
|---|---|
| mat1dim.a |
|
| mat1dim.b |
|
| mat1dim.o |
|
| Ref | Expression |
|---|---|
| mat1dimscm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1dim.o |
. . . . . . . . . . 11
| |
| 2 | opex 4932 |
. . . . . . . . . . 11
| |
| 3 | 1, 2 | eqeltri 2697 |
. . . . . . . . . 10
|
| 4 | 3 | a1i 11 |
. . . . . . . . 9
|
| 5 | 4 | anim2i 593 |
. . . . . . . 8
|
| 6 | 5 | ancomd 467 |
. . . . . . 7
|
| 7 | fnsng 5938 |
. . . . . . 7
| |
| 8 | 6, 7 | syl 17 |
. . . . . 6
|
| 9 | 8 | adantl 482 |
. . . . 5
|
| 10 | xpsng 6406 |
. . . . . . . 8
| |
| 11 | 6, 10 | syl 17 |
. . . . . . 7
|
| 12 | 11 | adantl 482 |
. . . . . 6
|
| 13 | 12 | fneq1d 5981 |
. . . . 5
|
| 14 | 9, 13 | mpbird 247 |
. . . 4
|
| 15 | xpsng 6406 |
. . . . . . . . 9
| |
| 16 | 1 | sneqi 4188 |
. . . . . . . . 9
|
| 17 | 15, 16 | syl6eqr 2674 |
. . . . . . . 8
|
| 18 | 17 | anidms 677 |
. . . . . . 7
|
| 19 | 18 | ad2antlr 763 |
. . . . . 6
|
| 20 | 19 | xpeq1d 5138 |
. . . . 5
|
| 21 | 20 | fneq1d 5981 |
. . . 4
|
| 22 | 14, 21 | mpbird 247 |
. . 3
|
| 23 | 3 | a1i 11 |
. . . . 5
|
| 24 | fnsng 5938 |
. . . . 5
| |
| 25 | 23, 24 | sylan 488 |
. . . 4
|
| 26 | 25 | adantl 482 |
. . 3
|
| 27 | snex 4908 |
. . . 4
| |
| 28 | 27 | a1i 11 |
. . 3
|
| 29 | inidm 3822 |
. . 3
| |
| 30 | elsni 4194 |
. . . . 5
| |
| 31 | fveq2 6191 |
. . . . . . 7
| |
| 32 | 15 | anidms 677 |
. . . . . . . . . . . 12
|
| 33 | 32 | ad2antlr 763 |
. . . . . . . . . . 11
|
| 34 | 33 | xpeq1d 5138 |
. . . . . . . . . 10
|
| 35 | 2 | a1i 11 |
. . . . . . . . . . . . . 14
|
| 36 | 35 | anim2i 593 |
. . . . . . . . . . . . 13
|
| 37 | 36 | ancomd 467 |
. . . . . . . . . . . 12
|
| 38 | xpsng 6406 |
. . . . . . . . . . . . 13
| |
| 39 | 1 | eqcomi 2631 |
. . . . . . . . . . . . . . 15
|
| 40 | 39 | opeq1i 4405 |
. . . . . . . . . . . . . 14
|
| 41 | 40 | sneqi 4188 |
. . . . . . . . . . . . 13
|
| 42 | 38, 41 | syl6eq 2672 |
. . . . . . . . . . . 12
|
| 43 | 37, 42 | syl 17 |
. . . . . . . . . . 11
|
| 44 | 43 | adantl 482 |
. . . . . . . . . 10
|
| 45 | 34, 44 | eqtrd 2656 |
. . . . . . . . 9
|
| 46 | 45 | fveq1d 6193 |
. . . . . . . 8
|
| 47 | fvsng 6447 |
. . . . . . . . . 10
| |
| 48 | 6, 47 | syl 17 |
. . . . . . . . 9
|
| 49 | 48 | adantl 482 |
. . . . . . . 8
|
| 50 | 46, 49 | eqtrd 2656 |
. . . . . . 7
|
| 51 | 31, 50 | sylan9eq 2676 |
. . . . . 6
|
| 52 | 51 | ex 450 |
. . . . 5
|
| 53 | 30, 52 | syl 17 |
. . . 4
|
| 54 | 53 | impcom 446 |
. . 3
|
| 55 | fveq2 6191 |
. . . . . . 7
| |
| 56 | fvsng 6447 |
. . . . . . . . 9
| |
| 57 | 23, 56 | sylan 488 |
. . . . . . . 8
|
| 58 | 57 | adantl 482 |
. . . . . . 7
|
| 59 | 55, 58 | sylan9eq 2676 |
. . . . . 6
|
| 60 | 59 | ex 450 |
. . . . 5
|
| 61 | 30, 60 | syl 17 |
. . . 4
|
| 62 | 61 | impcom 446 |
. . 3
|
| 63 | 22, 26, 28, 28, 29, 54, 62 | offval 6904 |
. 2
|
| 64 | simprl 794 |
. . 3
| |
| 65 | simpr 477 |
. . . . . 6
| |
| 66 | 65 | anim2i 593 |
. . . . 5
|
| 67 | df-3an 1039 |
. . . . 5
| |
| 68 | 66, 67 | sylibr 224 |
. . . 4
|
| 69 | mat1dim.a |
. . . . 5
| |
| 70 | mat1dim.b |
. . . . 5
| |
| 71 | 69, 70, 1 | mat1dimbas 20278 |
. . . 4
|
| 72 | 68, 71 | syl 17 |
. . 3
|
| 73 | eqid 2622 |
. . . 4
| |
| 74 | eqid 2622 |
. . . 4
| |
| 75 | eqid 2622 |
. . . 4
| |
| 76 | eqid 2622 |
. . . 4
| |
| 77 | 69, 73, 70, 74, 75, 76 | matvsca2 20234 |
. . 3
|
| 78 | 64, 72, 77 | syl2anc 693 |
. 2
|
| 79 | 3anass 1042 |
. . . . . 6
| |
| 80 | 79 | biimpri 218 |
. . . . 5
|
| 81 | 80 | adantlr 751 |
. . . 4
|
| 82 | 70, 75 | ringcl 18561 |
. . . 4
|
| 83 | 81, 82 | syl 17 |
. . 3
|
| 84 | fmptsn 6433 |
. . 3
| |
| 85 | 3, 83, 84 | sylancr 695 |
. 2
|
| 86 | 63, 78, 85 | 3eqtr4d 2666 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-ot 4186 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-hom 15966 df-cco 15967 df-0g 16102 df-prds 16108 df-pws 16110 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mgp 18490 df-ring 18549 df-sra 19172 df-rgmod 19173 df-dsmm 20076 df-frlm 20091 df-mat 20214 |
| This theorem is referenced by: mat1scmat 20345 |
| Copyright terms: Public domain | W3C validator |