| Step | Hyp | Ref
| Expression |
| 1 | | mbfadd.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ MblFn) |
| 2 | | mbff 23394 |
. . . . . . . 8
⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) |
| 3 | 1, 2 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) |
| 4 | | elin 3796 |
. . . . . . . 8
⊢ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↔ (𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ dom 𝐺)) |
| 5 | 4 | simplbi 476 |
. . . . . . 7
⊢ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐹) |
| 6 | | ffvelrn 6357 |
. . . . . . 7
⊢ ((𝐹:dom 𝐹⟶ℂ ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ℂ) |
| 7 | 3, 5, 6 | syl2an 494 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹‘𝑥) ∈ ℂ) |
| 8 | | mbfadd.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ MblFn) |
| 9 | | mbff 23394 |
. . . . . . . 8
⊢ (𝐺 ∈ MblFn → 𝐺:dom 𝐺⟶ℂ) |
| 10 | 8, 9 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐺:dom 𝐺⟶ℂ) |
| 11 | 4 | simprbi 480 |
. . . . . . 7
⊢ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐺) |
| 12 | | ffvelrn 6357 |
. . . . . . 7
⊢ ((𝐺:dom 𝐺⟶ℂ ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘𝑥) ∈ ℂ) |
| 13 | 10, 11, 12 | syl2an 494 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺‘𝑥) ∈ ℂ) |
| 14 | 7, 13 | negsubd 10398 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹‘𝑥) + -(𝐺‘𝑥)) = ((𝐹‘𝑥) − (𝐺‘𝑥))) |
| 15 | 14 | eqcomd 2628 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹‘𝑥) − (𝐺‘𝑥)) = ((𝐹‘𝑥) + -(𝐺‘𝑥))) |
| 16 | 15 | mpteq2dva 4744 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) − (𝐺‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) + -(𝐺‘𝑥)))) |
| 17 | | ffn 6045 |
. . . . 5
⊢ (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹) |
| 18 | 3, 17 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
| 19 | | ffn 6045 |
. . . . 5
⊢ (𝐺:dom 𝐺⟶ℂ → 𝐺 Fn dom 𝐺) |
| 20 | 10, 19 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐺 Fn dom 𝐺) |
| 21 | | mbfdm 23395 |
. . . . 5
⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom
vol) |
| 22 | 1, 21 | syl 17 |
. . . 4
⊢ (𝜑 → dom 𝐹 ∈ dom vol) |
| 23 | | mbfdm 23395 |
. . . . 5
⊢ (𝐺 ∈ MblFn → dom 𝐺 ∈ dom
vol) |
| 24 | 8, 23 | syl 17 |
. . . 4
⊢ (𝜑 → dom 𝐺 ∈ dom vol) |
| 25 | | eqid 2622 |
. . . 4
⊢ (dom
𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺) |
| 26 | | eqidd 2623 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
| 27 | | eqidd 2623 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
| 28 | 18, 20, 22, 24, 25, 26, 27 | offval 6904 |
. . 3
⊢ (𝜑 → (𝐹 ∘𝑓 − 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) − (𝐺‘𝑥)))) |
| 29 | | inmbl 23310 |
. . . . 5
⊢ ((dom
𝐹 ∈ dom vol ∧ dom
𝐺 ∈ dom vol) →
(dom 𝐹 ∩ dom 𝐺) ∈ dom
vol) |
| 30 | 22, 24, 29 | syl2anc 693 |
. . . 4
⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) |
| 31 | 13 | negcld 10379 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → -(𝐺‘𝑥) ∈ ℂ) |
| 32 | | eqidd 2623 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥))) |
| 33 | | eqidd 2623 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺‘𝑥)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺‘𝑥))) |
| 34 | 30, 7, 31, 32, 33 | offval2 6914 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) ∘𝑓 + (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) + -(𝐺‘𝑥)))) |
| 35 | 16, 28, 34 | 3eqtr4d 2666 |
. 2
⊢ (𝜑 → (𝐹 ∘𝑓 − 𝐺) = ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) ∘𝑓 + (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺‘𝑥)))) |
| 36 | | inss1 3833 |
. . . . 5
⊢ (dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 |
| 37 | | resmpt 5449 |
. . . . 5
⊢ ((dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥))) |
| 38 | 36, 37 | mp1i 13 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥))) |
| 39 | 3 | feqmptd 6249 |
. . . . . 6
⊢ (𝜑 → 𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥))) |
| 40 | 39, 1 | eqeltrrd 2702 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ∈ MblFn) |
| 41 | | mbfres 23411 |
. . . . 5
⊢ (((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
| 42 | 40, 30, 41 | syl2anc 693 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
| 43 | 38, 42 | eqeltrrd 2702 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) ∈ MblFn) |
| 44 | | inss2 3834 |
. . . . . 6
⊢ (dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 |
| 45 | | resmpt 5449 |
. . . . . 6
⊢ ((dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺‘𝑥))) |
| 46 | 44, 45 | mp1i 13 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺‘𝑥))) |
| 47 | 10 | feqmptd 6249 |
. . . . . . 7
⊢ (𝜑 → 𝐺 = (𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥))) |
| 48 | 47, 8 | eqeltrrd 2702 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ∈ MblFn) |
| 49 | | mbfres 23411 |
. . . . . 6
⊢ (((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
| 50 | 48, 30, 49 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
| 51 | 46, 50 | eqeltrrd 2702 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺‘𝑥)) ∈ MblFn) |
| 52 | 13, 51 | mbfneg 23417 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺‘𝑥)) ∈ MblFn) |
| 53 | 43, 52 | mbfadd 23428 |
. 2
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) ∘𝑓 + (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺‘𝑥))) ∈ MblFn) |
| 54 | 35, 53 | eqeltrd 2701 |
1
⊢ (𝜑 → (𝐹 ∘𝑓 − 𝐺) ∈ MblFn) |