![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minveclem4b | Structured version Visualization version GIF version |
Description: Lemma for minvec 23207. The convergent point of the Cauchy sequence 𝐹 is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
minvec.x | ⊢ 𝑋 = (Base‘𝑈) |
minvec.m | ⊢ − = (-g‘𝑈) |
minvec.n | ⊢ 𝑁 = (norm‘𝑈) |
minvec.u | ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
minvec.y | ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
minvec.w | ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
minvec.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
minvec.j | ⊢ 𝐽 = (TopOpen‘𝑈) |
minvec.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
minvec.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
minvec.d | ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) |
minvec.f | ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
minvec.p | ⊢ 𝑃 = ∪ (𝐽 fLim (𝑋filGen𝐹)) |
Ref | Expression |
---|---|
minveclem4b | ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minvec.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) | |
2 | minvec.x | . . . 4 ⊢ 𝑋 = (Base‘𝑈) | |
3 | eqid 2622 | . . . 4 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
4 | 2, 3 | lssss 18937 | . . 3 ⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
6 | inss2 3834 | . . 3 ⊢ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ 𝑌 | |
7 | minvec.m | . . . 4 ⊢ − = (-g‘𝑈) | |
8 | minvec.n | . . . 4 ⊢ 𝑁 = (norm‘𝑈) | |
9 | minvec.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) | |
10 | minvec.w | . . . 4 ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) | |
11 | minvec.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
12 | minvec.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝑈) | |
13 | minvec.r | . . . 4 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) | |
14 | minvec.s | . . . 4 ⊢ 𝑆 = inf(𝑅, ℝ, < ) | |
15 | minvec.d | . . . 4 ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) | |
16 | minvec.f | . . . 4 ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) | |
17 | minvec.p | . . . 4 ⊢ 𝑃 = ∪ (𝐽 fLim (𝑋filGen𝐹)) | |
18 | 2, 7, 8, 9, 1, 10, 11, 12, 13, 14, 15, 16, 17 | minveclem4a 23201 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) |
19 | 6, 18 | sseldi 3601 | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝑌) |
20 | 5, 19 | sseldd 3604 | 1 ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 {crab 2916 ∩ cin 3573 ⊆ wss 3574 ∪ cuni 4436 class class class wbr 4653 ↦ cmpt 4729 × cxp 5112 ran crn 5115 ↾ cres 5116 ‘cfv 5888 (class class class)co 6650 infcinf 8347 ℝcr 9935 + caddc 9939 < clt 10074 ≤ cle 10075 2c2 11070 ℝ+crp 11832 ↑cexp 12860 Basecbs 15857 ↾s cress 15858 distcds 15950 TopOpenctopn 16082 -gcsg 17424 LSubSpclss 18932 filGencfg 19735 fLim cflim 21738 normcnm 22381 ℂPreHilccph 22966 CMetSpccms 23129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fi 8317 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ico 12181 df-icc 12182 df-fz 12327 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-rest 16083 df-0g 16102 df-topgen 16104 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mulg 17541 df-subg 17591 df-ghm 17658 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-rnghom 18715 df-drng 18749 df-subrg 18778 df-staf 18845 df-srng 18846 df-lmod 18865 df-lss 18933 df-lmhm 19022 df-lvec 19103 df-sra 19172 df-rgmod 19173 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-fbas 19743 df-fg 19744 df-cnfld 19747 df-phl 19971 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-ntr 20824 df-nei 20902 df-haus 21119 df-fil 21650 df-flim 21743 df-xms 22125 df-ms 22126 df-nm 22387 df-ngp 22388 df-nlm 22391 df-clm 22863 df-cph 22968 df-cfil 23053 df-cmet 23055 df-cms 23132 |
This theorem is referenced by: minveclem4 23203 |
Copyright terms: Public domain | W3C validator |