MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1 Structured version   Visualization version   Unicode version

Theorem numclwwlk1 27231
Description: Statement 9 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v is kf(n-2)". Since  G is k-regular, the vertex v(n-2) = v has k neighbors v(n-1), so there are k walks from v(n-2) = v to v(n) = v (via each of v's neighbors) completing each of the f(n-2) walks from v=v(0) to v(n-2)=v. This theorem holds even for k=0, but only for finite graphs! (Contributed by Alexander van der Vekens, 26-Sep-2018.) (Revised by AV, 29-May-2021.)
Hypotheses
Ref Expression
extwwlkfab.v  |-  V  =  (Vtx `  G )
extwwlkfab.f  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
extwwlkfab.c  |-  C  =  ( v  e.  V ,  n  e.  ( ZZ>=
`  2 )  |->  { w  e.  ( n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =  ( w `
 0 ) ) } )
Assertion
Ref Expression
numclwwlk1  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  ( # `  ( X C N ) )  =  ( K  x.  ( # `  ( X F ( N  - 
2 ) ) ) ) )
Distinct variable groups:    n, G, v, w    n, N, v, w    n, V, v, w    n, X, v, w    w, F
Allowed substitution hints:    C( w, v, n)    F( v, n)    K( w, v, n)

Proof of Theorem numclwwlk1
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6678 . . 3  |-  ( X C N )  e. 
_V
2 rusgrusgr 26460 . . . . 5  |-  ( G RegUSGraph  K  ->  G  e. USGraph  )
32ad2antlr 763 . . . 4  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  G  e. USGraph  )
4 simprl 794 . . . 4  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  X  e.  V
)
5 simprr 796 . . . 4  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  N  e.  (
ZZ>= `  3 ) )
6 extwwlkfab.v . . . . 5  |-  V  =  (Vtx `  G )
7 extwwlkfab.f . . . . 5  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
8 extwwlkfab.c . . . . 5  |-  C  =  ( v  e.  V ,  n  e.  ( ZZ>=
`  2 )  |->  { w  e.  ( n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =  ( w `
 0 ) ) } )
96, 7, 8numclwlk1lem2 27230 . . . 4  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  E. f 
f : ( X C N ) -1-1-onto-> ( ( X F ( N  -  2 ) )  X.  ( G NeighbVtx  X ) ) )
103, 4, 5, 9syl3anc 1326 . . 3  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  E. f  f : ( X C N ) -1-1-onto-> ( ( X F ( N  -  2 ) )  X.  ( G NeighbVtx  X ) ) )
11 hasheqf1oi 13140 . . 3  |-  ( ( X C N )  e.  _V  ->  ( E. f  f :
( X C N ) -1-1-onto-> ( ( X F ( N  -  2 ) )  X.  ( G NeighbVtx  X ) )  -> 
( # `  ( X C N ) )  =  ( # `  (
( X F ( N  -  2 ) )  X.  ( G NeighbVtx  X ) ) ) ) )
121, 10, 11mpsyl 68 . 2  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  ( # `  ( X C N ) )  =  ( # `  (
( X F ( N  -  2 ) )  X.  ( G NeighbVtx  X ) ) ) )
13 simpll 790 . . . 4  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  V  e.  Fin )
14 uz3m2nn 11731 . . . . . 6  |-  ( N  e.  ( ZZ>= `  3
)  ->  ( N  -  2 )  e.  NN )
1514adantl 482 . . . . 5  |-  ( ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  -> 
( N  -  2 )  e.  NN )
1615adantl 482 . . . 4  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  ( N  - 
2 )  e.  NN )
177, 6numclwwlkffin 27214 . . . 4  |-  ( ( V  e.  Fin  /\  X  e.  V  /\  ( N  -  2
)  e.  NN )  ->  ( X F ( N  -  2 ) )  e.  Fin )
1813, 4, 16, 17syl3anc 1326 . . 3  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  ( X F ( N  -  2 ) )  e.  Fin )
196finrusgrfusgr 26461 . . . . . . 7  |-  ( ( G RegUSGraph  K  /\  V  e. 
Fin )  ->  G  e. FinUSGraph  )
2019ancoms 469 . . . . . 6  |-  ( ( V  e.  Fin  /\  G RegUSGraph  K )  ->  G  e. FinUSGraph  )
21 fusgrfis 26222 . . . . . 6  |-  ( G  e. FinUSGraph  ->  (Edg `  G
)  e.  Fin )
2220, 21syl 17 . . . . 5  |-  ( ( V  e.  Fin  /\  G RegUSGraph  K )  ->  (Edg `  G )  e.  Fin )
2322adantr 481 . . . 4  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  (Edg `  G
)  e.  Fin )
24 eqid 2622 . . . . 5  |-  (Edg `  G )  =  (Edg
`  G )
256, 24nbusgrfi 26276 . . . 4  |-  ( ( G  e. USGraph  /\  (Edg `  G )  e.  Fin  /\  X  e.  V )  ->  ( G NeighbVtx  X )  e.  Fin )
263, 23, 4, 25syl3anc 1326 . . 3  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  ( G NeighbVtx  X )  e.  Fin )
27 hashxp 13221 . . 3  |-  ( ( ( X F ( N  -  2 ) )  e.  Fin  /\  ( G NeighbVtx  X )  e. 
Fin )  ->  ( # `
 ( ( X F ( N  - 
2 ) )  X.  ( G NeighbVtx  X )
) )  =  ( ( # `  ( X F ( N  - 
2 ) ) )  x.  ( # `  ( G NeighbVtx  X ) ) ) )
2818, 26, 27syl2anc 693 . 2  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  ( # `  (
( X F ( N  -  2 ) )  X.  ( G NeighbVtx  X ) ) )  =  ( ( # `  ( X F ( N  -  2 ) ) )  x.  ( # `
 ( G NeighbVtx  X ) ) ) )
296rusgrpropnb 26479 . . . . . . . . 9  |-  ( G RegUSGraph  K  ->  ( G  e. USGraph  /\  K  e. NN0*  /\  A. x  e.  V  ( # `
 ( G NeighbVtx  x ) )  =  K ) )
30 oveq2 6658 . . . . . . . . . . . . 13  |-  ( x  =  X  ->  ( G NeighbVtx  x )  =  ( G NeighbVtx  X ) )
3130fveq2d 6195 . . . . . . . . . . . 12  |-  ( x  =  X  ->  ( # `
 ( G NeighbVtx  x ) )  =  ( # `  ( G NeighbVtx  X )
) )
3231eqeq1d 2624 . . . . . . . . . . 11  |-  ( x  =  X  ->  (
( # `  ( G NeighbVtx  x ) )  =  K  <->  ( # `  ( G NeighbVtx  X ) )  =  K ) )
3332rspccv 3306 . . . . . . . . . 10  |-  ( A. x  e.  V  ( # `
 ( G NeighbVtx  x ) )  =  K  -> 
( X  e.  V  ->  ( # `  ( G NeighbVtx  X ) )  =  K ) )
34333ad2ant3 1084 . . . . . . . . 9  |-  ( ( G  e. USGraph  /\  K  e. NN0*  /\  A. x  e.  V  ( # `  ( G NeighbVtx  x ) )  =  K )  ->  ( X  e.  V  ->  (
# `  ( G NeighbVtx  X ) )  =  K ) )
3529, 34syl 17 . . . . . . . 8  |-  ( G RegUSGraph  K  ->  ( X  e.  V  ->  ( # `  ( G NeighbVtx  X ) )  =  K ) )
3635adantl 482 . . . . . . 7  |-  ( ( V  e.  Fin  /\  G RegUSGraph  K )  ->  ( X  e.  V  ->  (
# `  ( G NeighbVtx  X ) )  =  K ) )
3736com12 32 . . . . . 6  |-  ( X  e.  V  ->  (
( V  e.  Fin  /\  G RegUSGraph  K )  ->  ( # `
 ( G NeighbVtx  X ) )  =  K ) )
3837adantr 481 . . . . 5  |-  ( ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  -> 
( ( V  e. 
Fin  /\  G RegUSGraph  K )  ->  ( # `  ( G NeighbVtx  X ) )  =  K ) )
3938impcom 446 . . . 4  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  ( # `  ( G NeighbVtx  X ) )  =  K )
4039oveq2d 6666 . . 3  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  ( ( # `  ( X F ( N  -  2 ) ) )  x.  ( # `
 ( G NeighbVtx  X ) ) )  =  ( ( # `  ( X F ( N  - 
2 ) ) )  x.  K ) )
41 hashcl 13147 . . . . 5  |-  ( ( X F ( N  -  2 ) )  e.  Fin  ->  ( # `
 ( X F ( N  -  2 ) ) )  e. 
NN0 )
42 nn0cn 11302 . . . . 5  |-  ( (
# `  ( X F ( N  - 
2 ) ) )  e.  NN0  ->  ( # `  ( X F ( N  -  2 ) ) )  e.  CC )
4318, 41, 423syl 18 . . . 4  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  ( # `  ( X F ( N  - 
2 ) ) )  e.  CC )
4420adantr 481 . . . . . 6  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  G  e. FinUSGraph  )
45 simplr 792 . . . . . 6  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  G RegUSGraph  K )
46 ne0i 3921 . . . . . . . 8  |-  ( X  e.  V  ->  V  =/=  (/) )
4746adantr 481 . . . . . . 7  |-  ( ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  ->  V  =/=  (/) )
4847adantl 482 . . . . . 6  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  V  =/=  (/) )
496frusgrnn0 26467 . . . . . 6  |-  ( ( G  e. FinUSGraph  /\  G RegUSGraph  K  /\  V  =/=  (/) )  ->  K  e.  NN0 )
5044, 45, 48, 49syl3anc 1326 . . . . 5  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  K  e.  NN0 )
5150nn0cnd 11353 . . . 4  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  K  e.  CC )
5243, 51mulcomd 10061 . . 3  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  ( ( # `  ( X F ( N  -  2 ) ) )  x.  K
)  =  ( K  x.  ( # `  ( X F ( N  - 
2 ) ) ) ) )
5340, 52eqtrd 2656 . 2  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  ( ( # `  ( X F ( N  -  2 ) ) )  x.  ( # `
 ( G NeighbVtx  X ) ) )  =  ( K  x.  ( # `  ( X F ( N  -  2 ) ) ) ) )
5412, 28, 533eqtrd 2660 1  |-  ( ( ( V  e.  Fin  /\  G RegUSGraph  K )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) ) )  ->  ( # `  ( X C N ) )  =  ( K  x.  ( # `  ( X F ( N  - 
2 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200   (/)c0 3915   class class class wbr 4653    X. cxp 5112   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Fincfn 7955   CCcc 9934   0cc0 9936    x. cmul 9941    - cmin 10266   NNcn 11020   2c2 11070   3c3 11071   NN0cn0 11292  NN0*cxnn0 11363   ZZ>=cuz 11687   #chash 13117  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044   FinUSGraph cfusgr 26208   NeighbVtx cnbgr 26224   RegUSGraph crusgr 26452   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-s2 13593  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-fusgr 26209  df-nbgr 26228  df-vtxdg 26362  df-rgr 26453  df-rusgr 26454  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  numclwwlk3OLD  27242  numclwwlk3  27243
  Copyright terms: Public domain W3C validator