MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk3 Structured version   Visualization version   GIF version

Theorem numclwwlk3 27243
Description: Statement 12 in [Huneke] p. 2: "Thus f(n) = (k - 1)f(n - 2) + k^(n-2)." - the number of the closed walks v(0) ... v(n-2) v(n-1) v(n) is the sum of the number of the closed walks v(0) ... v(n-2) v(n-1) v(n) with v(n-2) = v(n) (see numclwwlk1 27231) and with v(n-2) =/= v(n) (see numclwwlk2 27240): f(n) = kf(n-2) + k^(n-2) - f(n-2) = (k-1)f(n-2) + k^(n-2). (Contributed by Alexander van der Vekens, 26-Aug-2018.) (Revised by AV, 21-Jan-2022.)
Hypotheses
Ref Expression
numclwwlk3.v 𝑉 = (Vtx‘𝐺)
numclwwlk3.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
Assertion
Ref Expression
numclwwlk3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐹𝑁)) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾↑(𝑁 − 2))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑤,𝐹   𝑤,𝐾   𝑤,𝑉   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝐹(𝑣,𝑛)   𝐾(𝑣,𝑛)

Proof of Theorem numclwwlk3
StepHypRef Expression
1 simpl 473 . . . 4 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) → 𝐺 RegUSGraph 𝐾)
2 simp1 1061 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑉 ∈ Fin)
3 numclwwlk3.v . . . . 5 𝑉 = (Vtx‘𝐺)
43finrusgrfusgr 26461 . . . 4 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph )
51, 2, 4syl2an 494 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 ∈ FinUSGraph )
6 simpr2 1068 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋𝑉)
7 uzuzle23 11729 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
873ad2ant3 1084 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ (ℤ‘2))
98adantl 482 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑁 ∈ (ℤ‘2))
10 eqid 2622 . . . 4 (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)}) = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
11 numclwwlk3.f . . . 4 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
12 eqid 2622 . . . 4 (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))}) = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
13 eqid 2622 . . . 4 (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))}) = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
143, 10, 11, 12, 13numclwwlk3lem 27241 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (#‘(𝑋𝐹𝑁)) = ((#‘(𝑋(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})𝑁)) + (#‘(𝑋(𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})𝑁))))
155, 6, 9, 14syl21anc 1325 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐹𝑁)) = ((#‘(𝑋(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})𝑁)) + (#‘(𝑋(𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})𝑁))))
163, 10, 11, 12numclwwlk2 27240 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})𝑁)) = ((𝐾↑(𝑁 − 2)) − (#‘(𝑋𝐹(𝑁 − 2)))))
171, 2anim12ci 591 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾))
18 3simpc 1060 . . . . 5 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝑉𝑁 ∈ (ℤ‘3)))
1918adantl 482 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋𝑉𝑁 ∈ (ℤ‘3)))
203, 11, 13numclwwlk1 27231 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋(𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})𝑁)) = (𝐾 · (#‘(𝑋𝐹(𝑁 − 2)))))
2117, 19, 20syl2anc 693 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋(𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})𝑁)) = (𝐾 · (#‘(𝑋𝐹(𝑁 − 2)))))
2216, 21oveq12d 6668 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((#‘(𝑋(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})𝑁)) + (#‘(𝑋(𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})𝑁))) = (((𝐾↑(𝑁 − 2)) − (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾 · (#‘(𝑋𝐹(𝑁 − 2))))))
23 simpll 790 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 RegUSGraph 𝐾)
24 ne0i 3921 . . . . . . 7 (𝑋𝑉𝑉 ≠ ∅)
25243ad2ant2 1083 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑉 ≠ ∅)
2625adantl 482 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑉 ≠ ∅)
273frusgrnn0 26467 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
285, 23, 26, 27syl3anc 1326 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐾 ∈ ℕ0)
2928nn0cnd 11353 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐾 ∈ ℂ)
30 uz3m2nn 11731 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
31303anim3i 1250 . . . . 5 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑉 ∈ Fin ∧ 𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ))
3231adantl 482 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑉 ∈ Fin ∧ 𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ))
3311, 3numclwwlkffin 27214 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ) → (𝑋𝐹(𝑁 − 2)) ∈ Fin)
34 hashcl 13147 . . . . 5 ((𝑋𝐹(𝑁 − 2)) ∈ Fin → (#‘(𝑋𝐹(𝑁 − 2))) ∈ ℕ0)
3534nn0cnd 11353 . . . 4 ((𝑋𝐹(𝑁 − 2)) ∈ Fin → (#‘(𝑋𝐹(𝑁 − 2))) ∈ ℂ)
3632, 33, 353syl 18 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐹(𝑁 − 2))) ∈ ℂ)
37 numclwlk3lem3 27206 . . 3 ((𝐾 ∈ ℂ ∧ (#‘(𝑋𝐹(𝑁 − 2))) ∈ ℂ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝐾↑(𝑁 − 2)) − (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾 · (#‘(𝑋𝐹(𝑁 − 2))))) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾↑(𝑁 − 2))))
3829, 36, 9, 37syl3anc 1326 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (((𝐾↑(𝑁 − 2)) − (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾 · (#‘(𝑋𝐹(𝑁 − 2))))) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾↑(𝑁 − 2))))
3915, 22, 383eqtrd 2660 1 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐹𝑁)) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾↑(𝑁 − 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  {crab 2916  c0 3915   class class class wbr 4653  cfv 5888  (class class class)co 6650  cmpt2 6652  Fincfn 7955  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266  cn 11020  2c2 11070  3c3 11071  0cn0 11292  cuz 11687  cexp 12860  #chash 13117   lastS clsw 13292  Vtxcvtx 25874   FinUSGraph cfusgr 26208   RegUSGraph crusgr 26452   WWalksN cwwlksn 26718   ClWWalksN cclwwlksn 26876   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-s2 13593  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-fusgr 26209  df-nbgr 26228  df-vtxdg 26362  df-rgr 26453  df-rusgr 26454  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878  df-frgr 27121
This theorem is referenced by:  numclwwlk5  27246
  Copyright terms: Public domain W3C validator