MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc2 Structured version   Visualization version   GIF version

Theorem ovolicc2 23290
Description: The measure of a closed interval is upper bounded by its length. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc2.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolicc2 (𝜑 → (𝐵𝐴) ≤ (vol*‘(𝐴[,]𝐵)))
Distinct variable groups:   𝑦,𝑓,𝐴   𝐵,𝑓,𝑦   𝑦,𝑀   𝜑,𝑓,𝑦
Allowed substitution hint:   𝑀(𝑓)

Proof of Theorem ovolicc2
Dummy variables 𝑔 𝑘 𝑡 𝑢 𝑣 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolicc2.m . . . . . 6 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
21elovolm 23243 . . . . 5 (𝑧𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
3 ioof 12271 . . . . . . . . . . . . . . . . . 18 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
4 ffn 6045 . . . . . . . . . . . . . . . . . 18 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
53, 4ax-mp 5 . . . . . . . . . . . . . . . . 17 (,) Fn (ℝ* × ℝ*)
6 dffn3 6054 . . . . . . . . . . . . . . . . 17 ((,) Fn (ℝ* × ℝ*) ↔ (,):(ℝ* × ℝ*)⟶ran (,))
75, 6mpbi 220 . . . . . . . . . . . . . . . 16 (,):(ℝ* × ℝ*)⟶ran (,)
8 simpr 477 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → 𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
9 reex 10027 . . . . . . . . . . . . . . . . . . . . 21 ℝ ∈ V
109, 9xpex 6962 . . . . . . . . . . . . . . . . . . . 20 (ℝ × ℝ) ∈ V
1110inex2 4800 . . . . . . . . . . . . . . . . . . 19 ( ≤ ∩ (ℝ × ℝ)) ∈ V
12 nnex 11026 . . . . . . . . . . . . . . . . . . 19 ℕ ∈ V
1311, 12elmap 7886 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
148, 13sylib 208 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
15 inss2 3834 . . . . . . . . . . . . . . . . . 18 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
16 rexpssxrxp 10084 . . . . . . . . . . . . . . . . . 18 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
1715, 16sstri 3612 . . . . . . . . . . . . . . . . 17 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
18 fss 6056 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝑓:ℕ⟶(ℝ* × ℝ*))
1914, 17, 18sylancl 694 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → 𝑓:ℕ⟶(ℝ* × ℝ*))
20 fco 6058 . . . . . . . . . . . . . . . 16 (((,):(ℝ* × ℝ*)⟶ran (,) ∧ 𝑓:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝑓):ℕ⟶ran (,))
217, 19, 20sylancr 695 . . . . . . . . . . . . . . 15 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → ((,) ∘ 𝑓):ℕ⟶ran (,))
2221adantrr 753 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ((,) ∘ 𝑓):ℕ⟶ran (,))
23 frn 6053 . . . . . . . . . . . . . 14 (((,) ∘ 𝑓):ℕ⟶ran (,) → ran ((,) ∘ 𝑓) ⊆ ran (,))
2422, 23syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ran ((,) ∘ 𝑓) ⊆ ran (,))
25 retopbas 22564 . . . . . . . . . . . . . 14 ran (,) ∈ TopBases
26 bastg 20770 . . . . . . . . . . . . . 14 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
2725, 26ax-mp 5 . . . . . . . . . . . . 13 ran (,) ⊆ (topGen‘ran (,))
2824, 27syl6ss 3615 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ran ((,) ∘ 𝑓) ⊆ (topGen‘ran (,)))
29 fvex 6201 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ V
3029elpw2 4828 . . . . . . . . . . . 12 (ran ((,) ∘ 𝑓) ∈ 𝒫 (topGen‘ran (,)) ↔ ran ((,) ∘ 𝑓) ⊆ (topGen‘ran (,)))
3128, 30sylibr 224 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ran ((,) ∘ 𝑓) ∈ 𝒫 (topGen‘ran (,)))
32 ovolicc.1 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
33 ovolicc.2 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ)
34 eqid 2622 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) = (topGen‘ran (,))
35 eqid 2622 . . . . . . . . . . . . . . 15 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
3634, 35icccmp 22628 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
3732, 33, 36syl2anc 693 . . . . . . . . . . . . 13 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
38 retop 22565 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
39 iccssre 12255 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
4032, 33, 39syl2anc 693 . . . . . . . . . . . . . 14 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
41 uniretop 22566 . . . . . . . . . . . . . . 15 ℝ = (topGen‘ran (,))
4241cmpsub 21203 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)))
4338, 40, 42sylancr 695 . . . . . . . . . . . . 13 (𝜑 → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)))
4437, 43mpbid 222 . . . . . . . . . . . 12 (𝜑 → ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣))
4544adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣))
46 simprr 796 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))
47 unieq 4444 . . . . . . . . . . . . . 14 (𝑢 = ran ((,) ∘ 𝑓) → 𝑢 = ran ((,) ∘ 𝑓))
4847sseq2d 3633 . . . . . . . . . . . . 13 (𝑢 = ran ((,) ∘ 𝑓) → ((𝐴[,]𝐵) ⊆ 𝑢 ↔ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓)))
49 pweq 4161 . . . . . . . . . . . . . . 15 (𝑢 = ran ((,) ∘ 𝑓) → 𝒫 𝑢 = 𝒫 ran ((,) ∘ 𝑓))
5049ineq1d 3813 . . . . . . . . . . . . . 14 (𝑢 = ran ((,) ∘ 𝑓) → (𝒫 𝑢 ∩ Fin) = (𝒫 ran ((,) ∘ 𝑓) ∩ Fin))
5150rexeqdv 3145 . . . . . . . . . . . . 13 (𝑢 = ran ((,) ∘ 𝑓) → (∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣 ↔ ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣))
5248, 51imbi12d 334 . . . . . . . . . . . 12 (𝑢 = ran ((,) ∘ 𝑓) → (((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣) ↔ ((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) → ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)))
5352rspcv 3305 . . . . . . . . . . 11 (ran ((,) ∘ 𝑓) ∈ 𝒫 (topGen‘ran (,)) → (∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣) → ((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) → ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)))
5431, 45, 46, 53syl3c 66 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)
55 simprl 794 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin))
56 elin 3796 . . . . . . . . . . . . . . . 16 (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ↔ (𝑣 ∈ 𝒫 ran ((,) ∘ 𝑓) ∧ 𝑣 ∈ Fin))
5755, 56sylib 208 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑣 ∈ 𝒫 ran ((,) ∘ 𝑓) ∧ 𝑣 ∈ Fin))
5857simprd 479 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ∈ Fin)
5957simpld 475 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ∈ 𝒫 ran ((,) ∘ 𝑓))
6059elpwid 4170 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ⊆ ran ((,) ∘ 𝑓))
6160sseld 3602 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑡𝑣𝑡 ∈ ran ((,) ∘ 𝑓)))
62 ffn 6045 . . . . . . . . . . . . . . . . . . 19 (((,) ∘ 𝑓):ℕ⟶ran (,) → ((,) ∘ 𝑓) Fn ℕ)
6321, 62syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → ((,) ∘ 𝑓) Fn ℕ)
6463adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ((,) ∘ 𝑓) Fn ℕ)
65 fvelrnb 6243 . . . . . . . . . . . . . . . . 17 (((,) ∘ 𝑓) Fn ℕ → (𝑡 ∈ ran ((,) ∘ 𝑓) ↔ ∃𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡))
6664, 65syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑡 ∈ ran ((,) ∘ 𝑓) ↔ ∃𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡))
6761, 66sylibd 229 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑡𝑣 → ∃𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡))
6867ralrimiv 2965 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ∀𝑡𝑣𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡)
69 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑔𝑡) → (((,) ∘ 𝑓)‘𝑘) = (((,) ∘ 𝑓)‘(𝑔𝑡)))
7069eqeq1d 2624 . . . . . . . . . . . . . . 15 (𝑘 = (𝑔𝑡) → ((((,) ∘ 𝑓)‘𝑘) = 𝑡 ↔ (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))
7170ac6sfi 8204 . . . . . . . . . . . . . 14 ((𝑣 ∈ Fin ∧ ∀𝑡𝑣𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡) → ∃𝑔(𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))
7258, 68, 71syl2anc 693 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ∃𝑔(𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))
7332ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝐴 ∈ ℝ)
7433ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝐵 ∈ ℝ)
75 ovolicc.3 . . . . . . . . . . . . . . . . 17 (𝜑𝐴𝐵)
7675ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝐴𝐵)
77 eqid 2622 . . . . . . . . . . . . . . . 16 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
7814adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
79 simprll 802 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin))
80 simprlr 803 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → (𝐴[,]𝐵) ⊆ 𝑣)
81 simprrl 804 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝑔:𝑣⟶ℕ)
82 simprrr 805 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡)
83 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑥 → (𝑔𝑡) = (𝑔𝑥))
8483fveq2d 6195 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑥 → (((,) ∘ 𝑓)‘(𝑔𝑡)) = (((,) ∘ 𝑓)‘(𝑔𝑥)))
85 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑥𝑡 = 𝑥)
8684, 85eqeq12d 2637 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑥 → ((((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡 ↔ (((,) ∘ 𝑓)‘(𝑔𝑥)) = 𝑥))
8786rspccva 3308 . . . . . . . . . . . . . . . . 17 ((∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡𝑥𝑣) → (((,) ∘ 𝑓)‘(𝑔𝑥)) = 𝑥)
8882, 87sylan 488 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) ∧ 𝑥𝑣) → (((,) ∘ 𝑓)‘(𝑔𝑥)) = 𝑥)
89 eqid 2622 . . . . . . . . . . . . . . . 16 {𝑢𝑣 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} = {𝑢𝑣 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
9073, 74, 76, 77, 78, 79, 80, 81, 88, 89ovolicc2lem5 23289 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
9190expr 643 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ((𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
9291exlimdv 1861 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (∃𝑔(𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
9372, 92mpd 15 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
9493rexlimdvaa 3032 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → (∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣 → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
9594adantrr 753 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣 → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
9654, 95mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
97 breq2 4657 . . . . . . . . 9 (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → ((𝐵𝐴) ≤ 𝑧 ↔ (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
9896, 97syl5ibrcom 237 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → (𝐵𝐴) ≤ 𝑧))
9998expr 643 . . . . . . 7 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → ((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → (𝐵𝐴) ≤ 𝑧)))
10099impd 447 . . . . . 6 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → (((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → (𝐵𝐴) ≤ 𝑧))
101100rexlimdva 3031 . . . . 5 (𝜑 → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → (𝐵𝐴) ≤ 𝑧))
1022, 101syl5bi 232 . . . 4 (𝜑 → (𝑧𝑀 → (𝐵𝐴) ≤ 𝑧))
103102ralrimiv 2965 . . 3 (𝜑 → ∀𝑧𝑀 (𝐵𝐴) ≤ 𝑧)
104 ssrab2 3687 . . . . 5 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⊆ ℝ*
1051, 104eqsstri 3635 . . . 4 𝑀 ⊆ ℝ*
10633, 32resubcld 10458 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℝ)
107106rexrd 10089 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℝ*)
108 infxrgelb 12165 . . . 4 ((𝑀 ⊆ ℝ* ∧ (𝐵𝐴) ∈ ℝ*) → ((𝐵𝐴) ≤ inf(𝑀, ℝ*, < ) ↔ ∀𝑧𝑀 (𝐵𝐴) ≤ 𝑧))
109105, 107, 108sylancr 695 . . 3 (𝜑 → ((𝐵𝐴) ≤ inf(𝑀, ℝ*, < ) ↔ ∀𝑧𝑀 (𝐵𝐴) ≤ 𝑧))
110103, 109mpbird 247 . 2 (𝜑 → (𝐵𝐴) ≤ inf(𝑀, ℝ*, < ))
1111ovolval 23242 . . 3 ((𝐴[,]𝐵) ⊆ ℝ → (vol*‘(𝐴[,]𝐵)) = inf(𝑀, ℝ*, < ))
11240, 111syl 17 . 2 (𝜑 → (vol*‘(𝐴[,]𝐵)) = inf(𝑀, ℝ*, < ))
113110, 112breqtrrd 4681 1 (𝜑 → (𝐵𝐴) ≤ (vol*‘(𝐴[,]𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158   cuni 4436   class class class wbr 4653   × cxp 5112  ran crn 5115  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  supcsup 8346  infcinf 8347  cr 9935  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074  cle 10075  cmin 10266  cn 11020  (,)cioo 12175  [,]cicc 12178  seqcseq 12801  abscabs 13974  t crest 16081  topGenctg 16098  Topctop 20698  TopBasesctb 20749  Compccmp 21189  vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233
This theorem is referenced by:  ovolicc  23291
  Copyright terms: Public domain W3C validator