MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc2lem5 Structured version   Visualization version   GIF version

Theorem ovolicc2lem5 23289
Description: Lemma for ovolicc2 23290. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc2.4 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovolicc2.5 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovolicc2.6 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
ovolicc2.7 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
ovolicc2.8 (𝜑𝐺:𝑈⟶ℕ)
ovolicc2.9 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
ovolicc2.10 𝑇 = {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
Assertion
Ref Expression
ovolicc2lem5 (𝜑 → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑢,𝑡,𝐴   𝑡,𝐵,𝑢   𝑡,𝐹   𝑡,𝐺   𝜑,𝑡   𝑡,𝑇   𝑡,𝑈,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝑆(𝑢,𝑡)   𝑇(𝑢)   𝐹(𝑢)   𝐺(𝑢)

Proof of Theorem ovolicc2lem5
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolicc2.7 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
2 ovolicc.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
32rexrd 10089 . . . . 5 (𝜑𝐴 ∈ ℝ*)
4 ovolicc.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
54rexrd 10089 . . . . 5 (𝜑𝐵 ∈ ℝ*)
6 ovolicc.3 . . . . 5 (𝜑𝐴𝐵)
7 lbicc2 12288 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
83, 5, 6, 7syl3anc 1326 . . . 4 (𝜑𝐴 ∈ (𝐴[,]𝐵))
91, 8sseldd 3604 . . 3 (𝜑𝐴 𝑈)
10 eluni2 4440 . . 3 (𝐴 𝑈 ↔ ∃𝑧𝑈 𝐴𝑧)
119, 10sylib 208 . 2 (𝜑 → ∃𝑧𝑈 𝐴𝑧)
12 ovolicc2.6 . . . . . . . 8 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
13 elin 3796 . . . . . . . 8 (𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin) ↔ (𝑈 ∈ 𝒫 ran ((,) ∘ 𝐹) ∧ 𝑈 ∈ Fin))
1412, 13sylib 208 . . . . . . 7 (𝜑 → (𝑈 ∈ 𝒫 ran ((,) ∘ 𝐹) ∧ 𝑈 ∈ Fin))
1514simprd 479 . . . . . 6 (𝜑𝑈 ∈ Fin)
16 ovolicc2.10 . . . . . . 7 𝑇 = {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
17 ssrab2 3687 . . . . . . 7 {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} ⊆ 𝑈
1816, 17eqsstri 3635 . . . . . 6 𝑇𝑈
19 ssfi 8180 . . . . . 6 ((𝑈 ∈ Fin ∧ 𝑇𝑈) → 𝑇 ∈ Fin)
2015, 18, 19sylancl 694 . . . . 5 (𝜑𝑇 ∈ Fin)
211adantr 481 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐴[,]𝐵) ⊆ 𝑈)
22 inss2 3834 . . . . . . . . . . . . 13 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
23 ovolicc2.8 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝑈⟶ℕ)
24 ineq1 3807 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑡 → (𝑢 ∩ (𝐴[,]𝐵)) = (𝑡 ∩ (𝐴[,]𝐵)))
2524neeq1d 2853 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑡 → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅))
2625, 16elrab2 3366 . . . . . . . . . . . . . . . 16 (𝑡𝑇 ↔ (𝑡𝑈 ∧ (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅))
2726simplbi 476 . . . . . . . . . . . . . . 15 (𝑡𝑇𝑡𝑈)
28 ffvelrn 6357 . . . . . . . . . . . . . . 15 ((𝐺:𝑈⟶ℕ ∧ 𝑡𝑈) → (𝐺𝑡) ∈ ℕ)
2923, 27, 28syl2an 494 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → (𝐺𝑡) ∈ ℕ)
30 ovolicc2.5 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3130ffvelrnda 6359 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐺𝑡) ∈ ℕ) → (𝐹‘(𝐺𝑡)) ∈ ( ≤ ∩ (ℝ × ℝ)))
3229, 31syldan 487 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → (𝐹‘(𝐺𝑡)) ∈ ( ≤ ∩ (ℝ × ℝ)))
3322, 32sseldi 3601 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ))
34 xp2nd 7199 . . . . . . . . . . . 12 ((𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ) → (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
3533, 34syl 17 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
364adantr 481 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 𝐵 ∈ ℝ)
3735, 36ifcld 4131 . . . . . . . . . 10 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ ℝ)
3826simprbi 480 . . . . . . . . . . . . . 14 (𝑡𝑇 → (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅)
3938adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅)
40 n0 3931 . . . . . . . . . . . . 13 ((𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))
4139, 40sylib 208 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → ∃𝑦 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))
422adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐴 ∈ ℝ)
43 simprr 796 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))
44 elin 3796 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)) ↔ (𝑦𝑡𝑦 ∈ (𝐴[,]𝐵)))
4543, 44sylib 208 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦𝑡𝑦 ∈ (𝐴[,]𝐵)))
4645simprd 479 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ (𝐴[,]𝐵))
474adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐵 ∈ ℝ)
48 elicc2 12238 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
4942, 47, 48syl2anc 693 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
5046, 49mpbid 222 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
5150simp1d 1073 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ ℝ)
5233adantrr 753 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ))
5352, 34syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
5450simp2d 1074 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐴𝑦)
5545simpld 475 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦𝑡)
5629adantrr 753 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝐺𝑡) ∈ ℕ)
57 fvco3 6275 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (𝐺𝑡) ∈ ℕ) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = ((,)‘(𝐹‘(𝐺𝑡))))
5830, 57sylan 488 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐺𝑡) ∈ ℕ) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = ((,)‘(𝐹‘(𝐺𝑡))))
5956, 58syldan 487 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = ((,)‘(𝐹‘(𝐺𝑡))))
60 ovolicc2.9 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
6127, 60sylan2 491 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡𝑇) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
6261adantrr 753 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
63 1st2nd2 7205 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ) → (𝐹‘(𝐺𝑡)) = ⟨(1st ‘(𝐹‘(𝐺𝑡))), (2nd ‘(𝐹‘(𝐺𝑡)))⟩)
6452, 63syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝐹‘(𝐺𝑡)) = ⟨(1st ‘(𝐹‘(𝐺𝑡))), (2nd ‘(𝐹‘(𝐺𝑡)))⟩)
6564fveq2d 6195 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → ((,)‘(𝐹‘(𝐺𝑡))) = ((,)‘⟨(1st ‘(𝐹‘(𝐺𝑡))), (2nd ‘(𝐹‘(𝐺𝑡)))⟩))
66 df-ov 6653 . . . . . . . . . . . . . . . . . . . . 21 ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))) = ((,)‘⟨(1st ‘(𝐹‘(𝐺𝑡))), (2nd ‘(𝐹‘(𝐺𝑡)))⟩)
6765, 66syl6eqr 2674 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → ((,)‘(𝐹‘(𝐺𝑡))) = ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))))
6859, 62, 673eqtr3d 2664 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑡 = ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))))
6955, 68eleqtrd 2703 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))))
70 xp1st 7198 . . . . . . . . . . . . . . . . . . . 20 ((𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ) → (1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
7152, 70syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
72 rexr 10085 . . . . . . . . . . . . . . . . . . . 20 ((1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ → (1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ*)
73 rexr 10085 . . . . . . . . . . . . . . . . . . . 20 ((2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ → (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ*)
74 elioo2 12216 . . . . . . . . . . . . . . . . . . . 20 (((1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ* ∧ (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ*) → (𝑦 ∈ ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))) ↔ (𝑦 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑡))) < 𝑦𝑦 < (2nd ‘(𝐹‘(𝐺𝑡))))))
7572, 73, 74syl2an 494 . . . . . . . . . . . . . . . . . . 19 (((1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ ∧ (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ) → (𝑦 ∈ ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))) ↔ (𝑦 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑡))) < 𝑦𝑦 < (2nd ‘(𝐹‘(𝐺𝑡))))))
7671, 53, 75syl2anc 693 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))) ↔ (𝑦 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑡))) < 𝑦𝑦 < (2nd ‘(𝐹‘(𝐺𝑡))))))
7769, 76mpbid 222 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑡))) < 𝑦𝑦 < (2nd ‘(𝐹‘(𝐺𝑡)))))
7877simp3d 1075 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 < (2nd ‘(𝐹‘(𝐺𝑡))))
7951, 53, 78ltled 10185 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ≤ (2nd ‘(𝐹‘(𝐺𝑡))))
8042, 51, 53, 54, 79letrd 10194 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡))))
8180expr 643 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → (𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡)))))
8281exlimdv 1861 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (∃𝑦 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡)))))
8341, 82mpd 15 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡))))
846adantr 481 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 𝐴𝐵)
85 breq2 4657 . . . . . . . . . . . 12 ((2nd ‘(𝐹‘(𝐺𝑡))) = if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) → (𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡))) ↔ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵)))
86 breq2 4657 . . . . . . . . . . . 12 (𝐵 = if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) → (𝐴𝐵𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵)))
8785, 86ifboth 4124 . . . . . . . . . . 11 ((𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡))) ∧ 𝐴𝐵) → 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵))
8883, 84, 87syl2anc 693 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵))
89 min2 12021 . . . . . . . . . . 11 (((2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)
9035, 36, 89syl2anc 693 . . . . . . . . . 10 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)
91 elicc2 12238 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵) ↔ (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ ℝ ∧ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)))
922, 4, 91syl2anc 693 . . . . . . . . . . 11 (𝜑 → (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵) ↔ (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ ℝ ∧ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)))
9392adantr 481 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵) ↔ (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ ℝ ∧ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)))
9437, 88, 90, 93mpbir3and 1245 . . . . . . . . 9 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵))
9521, 94sseldd 3604 . . . . . . . 8 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑈)
96 eluni2 4440 . . . . . . . 8 (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑈 ↔ ∃𝑥𝑈 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
9795, 96sylib 208 . . . . . . 7 ((𝜑𝑡𝑇) → ∃𝑥𝑈 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
98 simprl 794 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → 𝑥𝑈)
99 simprr 796 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
10094adantr 481 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵))
101 inelcm 4032 . . . . . . . . . . . 12 ((if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵)) → (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅)
10299, 100, 101syl2anc 693 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅)
103 ineq1 3807 . . . . . . . . . . . . 13 (𝑢 = 𝑥 → (𝑢 ∩ (𝐴[,]𝐵)) = (𝑥 ∩ (𝐴[,]𝐵)))
104103neeq1d 2853 . . . . . . . . . . . 12 (𝑢 = 𝑥 → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅))
105104, 16elrab2 3366 . . . . . . . . . . 11 (𝑥𝑇 ↔ (𝑥𝑈 ∧ (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅))
10698, 102, 105sylanbrc 698 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → 𝑥𝑇)
107106, 99jca 554 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → (𝑥𝑇 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥))
108107ex 450 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥) → (𝑥𝑇 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)))
109108reximdv2 3014 . . . . . . 7 ((𝜑𝑡𝑇) → (∃𝑥𝑈 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥 → ∃𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥))
11097, 109mpd 15 . . . . . 6 ((𝜑𝑡𝑇) → ∃𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
111110ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑡𝑇𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
112 eleq2 2690 . . . . . 6 (𝑥 = (𝑡) → (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥 ↔ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
113112ac6sfi 8204 . . . . 5 ((𝑇 ∈ Fin ∧ ∀𝑡𝑇𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥) → ∃(:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
11420, 111, 113syl2anc 693 . . . 4 (𝜑 → ∃(:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
115114adantr 481 . . 3 ((𝜑 ∧ (𝑧𝑈𝐴𝑧)) → ∃(:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
116 fveq2 6191 . . . . . . . . . . . 12 (𝑥 = 𝑡 → (𝐺𝑥) = (𝐺𝑡))
117116fveq2d 6195 . . . . . . . . . . 11 (𝑥 = 𝑡 → (𝐹‘(𝐺𝑥)) = (𝐹‘(𝐺𝑡)))
118117fveq2d 6195 . . . . . . . . . 10 (𝑥 = 𝑡 → (2nd ‘(𝐹‘(𝐺𝑥))) = (2nd ‘(𝐹‘(𝐺𝑡))))
119118breq1d 4663 . . . . . . . . 9 (𝑥 = 𝑡 → ((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵 ↔ (2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵))
120119, 118ifbieq1d 4109 . . . . . . . 8 (𝑥 = 𝑡 → if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) = if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵))
121 fveq2 6191 . . . . . . . 8 (𝑥 = 𝑡 → (𝑥) = (𝑡))
122120, 121eleq12d 2695 . . . . . . 7 (𝑥 = 𝑡 → (if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥) ↔ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
123122cbvralv 3171 . . . . . 6 (∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥) ↔ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡))
1242adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐴 ∈ ℝ)
1254adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐵 ∈ ℝ)
1266adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐴𝐵)
127 ovolicc2.4 . . . . . . . . 9 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
12830adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
12912adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
1301adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → (𝐴[,]𝐵) ⊆ 𝑈)
13123adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐺:𝑈⟶ℕ)
13260adantlr 751 . . . . . . . . 9 (((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) ∧ 𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
133 simprrl 804 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → :𝑇𝑇)
134 simprrr 805 . . . . . . . . . 10 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥))
135122rspccva 3308 . . . . . . . . . 10 ((∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥) ∧ 𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡))
136134, 135sylan 488 . . . . . . . . 9 (((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) ∧ 𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡))
137 simprlr 803 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐴𝑧)
138 simprll 802 . . . . . . . . . 10 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝑧𝑈)
1398adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐴 ∈ (𝐴[,]𝐵))
140 inelcm 4032 . . . . . . . . . . 11 ((𝐴𝑧𝐴 ∈ (𝐴[,]𝐵)) → (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅)
141137, 139, 140syl2anc 693 . . . . . . . . . 10 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅)
142 ineq1 3807 . . . . . . . . . . . 12 (𝑢 = 𝑧 → (𝑢 ∩ (𝐴[,]𝐵)) = (𝑧 ∩ (𝐴[,]𝐵)))
143142neeq1d 2853 . . . . . . . . . . 11 (𝑢 = 𝑧 → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅))
144143, 16elrab2 3366 . . . . . . . . . 10 (𝑧𝑇 ↔ (𝑧𝑈 ∧ (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅))
145138, 141, 144sylanbrc 698 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝑧𝑇)
146 eqid 2622 . . . . . . . . 9 seq1(( ∘ 1st ), (ℕ × {𝑧})) = seq1(( ∘ 1st ), (ℕ × {𝑧}))
147 fveq2 6191 . . . . . . . . . . 11 (𝑚 = 𝑛 → (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚) = (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑛))
148147eleq2d 2687 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚) ↔ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑛)))
149148cbvrabv 3199 . . . . . . . . 9 {𝑚 ∈ ℕ ∣ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚)} = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑛)}
150 eqid 2622 . . . . . . . . 9 inf({𝑚 ∈ ℕ ∣ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚)}, ℝ, < ) = inf({𝑚 ∈ ℕ ∣ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚)}, ℝ, < )
151124, 125, 126, 127, 128, 129, 130, 131, 132, 16, 133, 136, 137, 145, 146, 149, 150ovolicc2lem4 23288 . . . . . . . 8 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
152151anassrs 680 . . . . . . 7 (((𝜑 ∧ (𝑧𝑈𝐴𝑧)) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥))) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
153152expr 643 . . . . . 6 (((𝜑 ∧ (𝑧𝑈𝐴𝑧)) ∧ :𝑇𝑇) → (∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < )))
154123, 153syl5bir 233 . . . . 5 (((𝜑 ∧ (𝑧𝑈𝐴𝑧)) ∧ :𝑇𝑇) → (∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < )))
155154expimpd 629 . . . 4 ((𝜑 ∧ (𝑧𝑈𝐴𝑧)) → ((:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < )))
156155exlimdv 1861 . . 3 ((𝜑 ∧ (𝑧𝑈𝐴𝑧)) → (∃(:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < )))
157115, 156mpd 15 . 2 ((𝜑 ∧ (𝑧𝑈𝐴𝑧)) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
15811, 157rexlimddv 3035 1 (𝜑 → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  cin 3573  wss 3574  c0 3915  ifcif 4086  𝒫 cpw 4158  {csn 4177  cop 4183   cuni 4436   class class class wbr 4653   × cxp 5112  ran crn 5115  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  Fincfn 7955  supcsup 8346  infcinf 8347  cr 9935  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074  cle 10075  cmin 10266  cn 11020  (,)cioo 12175  [,]cicc 12178  seqcseq 12801  abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  ovolicc2  23290
  Copyright terms: Public domain W3C validator