Proof of Theorem ovolval4lem1
| Step | Hyp | Ref
| Expression |
| 1 | | ioof 12271 |
. . . . . . . 8
⊢
(,):(ℝ* × ℝ*)⟶𝒫
ℝ |
| 2 | 1 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (,):(ℝ*
× ℝ*)⟶𝒫 ℝ) |
| 3 | | ovolval4lem1.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℕ⟶(ℝ* ×
ℝ*)) |
| 4 | | fco 6058 |
. . . . . . 7
⊢
(((,):(ℝ* × ℝ*)⟶𝒫
ℝ ∧ 𝐹:ℕ⟶(ℝ* ×
ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫
ℝ) |
| 5 | 2, 3, 4 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫
ℝ) |
| 6 | | ffn 6045 |
. . . . . 6
⊢ (((,)
∘ 𝐹):ℕ⟶𝒫 ℝ →
((,) ∘ 𝐹) Fn
ℕ) |
| 7 | 5, 6 | syl 17 |
. . . . 5
⊢ (𝜑 → ((,) ∘ 𝐹) Fn ℕ) |
| 8 | | fniunfv 6505 |
. . . . 5
⊢ (((,)
∘ 𝐹) Fn ℕ
→ ∪ 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ∪ ran ((,)
∘ 𝐹)) |
| 9 | 7, 8 | syl 17 |
. . . 4
⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ∪ ran ((,)
∘ 𝐹)) |
| 10 | 9 | eqcomd 2628 |
. . 3
⊢ (𝜑 → ∪ ran ((,) ∘ 𝐹) = ∪
𝑛 ∈ ℕ (((,)
∘ 𝐹)‘𝑛)) |
| 11 | | ovolval4lem1.a |
. . . . . . . . 9
⊢ 𝐴 = {𝑛 ∈ ℕ ∣ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛))} |
| 12 | | ssrab2 3687 |
. . . . . . . . 9
⊢ {𝑛 ∈ ℕ ∣
(1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛))} ⊆ ℕ |
| 13 | 11, 12 | eqsstri 3635 |
. . . . . . . 8
⊢ 𝐴 ⊆
ℕ |
| 14 | | undif 4049 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℕ ↔ (𝐴 ∪ (ℕ ∖ 𝐴)) = ℕ) |
| 15 | 13, 14 | mpbi 220 |
. . . . . . 7
⊢ (𝐴 ∪ (ℕ ∖ 𝐴)) = ℕ |
| 16 | 15 | eqcomi 2631 |
. . . . . 6
⊢ ℕ =
(𝐴 ∪ (ℕ ∖
𝐴)) |
| 17 | 16 | iuneq1i 39259 |
. . . . 5
⊢ ∪ 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ∪ 𝑛 ∈ (𝐴 ∪ (ℕ ∖ 𝐴))(((,) ∘ 𝐹)‘𝑛) |
| 18 | | iunxun 4605 |
. . . . 5
⊢ ∪ 𝑛 ∈ (𝐴 ∪ (ℕ ∖ 𝐴))(((,) ∘ 𝐹)‘𝑛) = (∪
𝑛 ∈ 𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ ∪
𝑛 ∈ (ℕ ∖
𝐴)(((,) ∘ 𝐹)‘𝑛)) |
| 19 | 17, 18 | eqtri 2644 |
. . . 4
⊢ ∪ 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = (∪
𝑛 ∈ 𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ ∪
𝑛 ∈ (ℕ ∖
𝐴)(((,) ∘ 𝐹)‘𝑛)) |
| 20 | 19 | a1i 11 |
. . 3
⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = (∪
𝑛 ∈ 𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ ∪
𝑛 ∈ (ℕ ∖
𝐴)(((,) ∘ 𝐹)‘𝑛))) |
| 21 | 3 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ (ℝ* ×
ℝ*)) |
| 22 | | xp1st 7198 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑛) ∈ (ℝ* ×
ℝ*) → (1st ‘(𝐹‘𝑛)) ∈
ℝ*) |
| 23 | 21, 22 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ∈
ℝ*) |
| 24 | | xp2nd 7199 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑛) ∈ (ℝ* ×
ℝ*) → (2nd ‘(𝐹‘𝑛)) ∈
ℝ*) |
| 25 | 21, 24 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐹‘𝑛)) ∈
ℝ*) |
| 26 | 25, 23 | ifcld 4131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if((1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)), (2nd
‘(𝐹‘𝑛)), (1st
‘(𝐹‘𝑛))) ∈
ℝ*) |
| 27 | 23, 26 | opelxpd 5149 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 〈(1st
‘(𝐹‘𝑛)), if((1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)), (2nd
‘(𝐹‘𝑛)), (1st
‘(𝐹‘𝑛)))〉 ∈
(ℝ* × ℝ*)) |
| 28 | | ovolval4lem1.g |
. . . . . . . . 9
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈(1st
‘(𝐹‘𝑛)), if((1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)), (2nd
‘(𝐹‘𝑛)), (1st
‘(𝐹‘𝑛)))〉) |
| 29 | 27, 28 | fmptd 6385 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:ℕ⟶(ℝ* ×
ℝ*)) |
| 30 | | fco 6058 |
. . . . . . . 8
⊢
(((,):(ℝ* × ℝ*)⟶𝒫
ℝ ∧ 𝐺:ℕ⟶(ℝ* ×
ℝ*)) → ((,) ∘ 𝐺):ℕ⟶𝒫
ℝ) |
| 31 | 2, 29, 30 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → ((,) ∘ 𝐺):ℕ⟶𝒫
ℝ) |
| 32 | | ffn 6045 |
. . . . . . 7
⊢ (((,)
∘ 𝐺):ℕ⟶𝒫 ℝ →
((,) ∘ 𝐺) Fn
ℕ) |
| 33 | 31, 32 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((,) ∘ 𝐺) Fn ℕ) |
| 34 | | fniunfv 6505 |
. . . . . 6
⊢ (((,)
∘ 𝐺) Fn ℕ
→ ∪ 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = ∪ ran ((,)
∘ 𝐺)) |
| 35 | 33, 34 | syl 17 |
. . . . 5
⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = ∪ ran ((,)
∘ 𝐺)) |
| 36 | 35 | eqcomd 2628 |
. . . 4
⊢ (𝜑 → ∪ ran ((,) ∘ 𝐺) = ∪
𝑛 ∈ ℕ (((,)
∘ 𝐺)‘𝑛)) |
| 37 | 16 | iuneq1i 39259 |
. . . . . 6
⊢ ∪ 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = ∪ 𝑛 ∈ (𝐴 ∪ (ℕ ∖ 𝐴))(((,) ∘ 𝐺)‘𝑛) |
| 38 | | iunxun 4605 |
. . . . . 6
⊢ ∪ 𝑛 ∈ (𝐴 ∪ (ℕ ∖ 𝐴))(((,) ∘ 𝐺)‘𝑛) = (∪
𝑛 ∈ 𝐴 (((,) ∘ 𝐺)‘𝑛) ∪ ∪
𝑛 ∈ (ℕ ∖
𝐴)(((,) ∘ 𝐺)‘𝑛)) |
| 39 | 37, 38 | eqtri 2644 |
. . . . 5
⊢ ∪ 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = (∪
𝑛 ∈ 𝐴 (((,) ∘ 𝐺)‘𝑛) ∪ ∪
𝑛 ∈ (ℕ ∖
𝐴)(((,) ∘ 𝐺)‘𝑛)) |
| 40 | 39 | a1i 11 |
. . . 4
⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = (∪
𝑛 ∈ 𝐴 (((,) ∘ 𝐺)‘𝑛) ∪ ∪
𝑛 ∈ (ℕ ∖
𝐴)(((,) ∘ 𝐺)‘𝑛))) |
| 41 | 29 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 𝐺:ℕ⟶(ℝ* ×
ℝ*)) |
| 42 | 13 | sseli 3599 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝐴 → 𝑛 ∈ ℕ) |
| 43 | 42 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ ℕ) |
| 44 | | fvco3 6275 |
. . . . . . . 8
⊢ ((𝐺:ℕ⟶(ℝ* ×
ℝ*) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐺)‘𝑛) = ((,)‘(𝐺‘𝑛))) |
| 45 | 41, 43, 44 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (((,) ∘ 𝐺)‘𝑛) = ((,)‘(𝐺‘𝑛))) |
| 46 | 3 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 𝐹:ℕ⟶(ℝ* ×
ℝ*)) |
| 47 | | fvco3 6275 |
. . . . . . . . 9
⊢ ((𝐹:ℕ⟶(ℝ* ×
ℝ*) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹‘𝑛))) |
| 48 | 46, 43, 47 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹‘𝑛))) |
| 49 | | simpl 473 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 𝜑) |
| 50 | | 1st2nd2 7205 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑛) ∈ (ℝ* ×
ℝ*) → (𝐹‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) |
| 51 | 21, 50 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) |
| 52 | 49, 43, 51 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝐹‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) |
| 53 | 28 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 = (𝑛 ∈ ℕ ↦ 〈(1st
‘(𝐹‘𝑛)), if((1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)), (2nd
‘(𝐹‘𝑛)), (1st
‘(𝐹‘𝑛)))〉)) |
| 54 | 27 | elexd 3214 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 〈(1st
‘(𝐹‘𝑛)), if((1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)), (2nd
‘(𝐹‘𝑛)), (1st
‘(𝐹‘𝑛)))〉 ∈
V) |
| 55 | 53, 54 | fvmpt2d 6293 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), if((1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛)), (1st ‘(𝐹‘𝑛)))〉) |
| 56 | 49, 43, 55 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝐺‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), if((1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛)), (1st ‘(𝐹‘𝑛)))〉) |
| 57 | 11 | eleq2i 2693 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ 𝐴 ↔ 𝑛 ∈ {𝑛 ∈ ℕ ∣ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛))}) |
| 58 | 57 | biimpi 206 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ 𝐴 → 𝑛 ∈ {𝑛 ∈ ℕ ∣ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛))}) |
| 59 | | rabid 3116 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ {𝑛 ∈ ℕ ∣ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛))} ↔ (𝑛 ∈ ℕ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) |
| 60 | 58, 59 | sylib 208 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ 𝐴 → (𝑛 ∈ ℕ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) |
| 61 | 60 | simprd 479 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ 𝐴 → (1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛))) |
| 62 | 61 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛))) |
| 63 | 62 | iftrued 4094 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → if((1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛)), (1st ‘(𝐹‘𝑛))) = (2nd ‘(𝐹‘𝑛))) |
| 64 | 63 | opeq2d 4409 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 〈(1st ‘(𝐹‘𝑛)), if((1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛)), (1st ‘(𝐹‘𝑛)))〉 = 〈(1st
‘(𝐹‘𝑛)), (2nd
‘(𝐹‘𝑛))〉) |
| 65 | | eqidd 2623 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉 = 〈(1st
‘(𝐹‘𝑛)), (2nd
‘(𝐹‘𝑛))〉) |
| 66 | 56, 64, 65 | 3eqtrd 2660 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝐺‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) |
| 67 | 52, 66 | eqtr4d 2659 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝐹‘𝑛) = (𝐺‘𝑛)) |
| 68 | 67 | fveq2d 6195 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((,)‘(𝐹‘𝑛)) = ((,)‘(𝐺‘𝑛))) |
| 69 | 48, 68 | eqtrd 2656 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐺‘𝑛))) |
| 70 | 45, 69 | eqtr4d 2659 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (((,) ∘ 𝐺)‘𝑛) = (((,) ∘ 𝐹)‘𝑛)) |
| 71 | 70 | iuneq2dv 4542 |
. . . . 5
⊢ (𝜑 → ∪ 𝑛 ∈ 𝐴 (((,) ∘ 𝐺)‘𝑛) = ∪ 𝑛 ∈ 𝐴 (((,) ∘ 𝐹)‘𝑛)) |
| 72 | 29 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → 𝐺:ℕ⟶(ℝ* ×
ℝ*)) |
| 73 | | eldifi 3732 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (ℕ ∖ 𝐴) → 𝑛 ∈ ℕ) |
| 74 | 73 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → 𝑛 ∈ ℕ) |
| 75 | 72, 74, 44 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐺)‘𝑛) = ((,)‘(𝐺‘𝑛))) |
| 76 | | simpl 473 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → 𝜑) |
| 77 | 76, 74, 55 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → (𝐺‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), if((1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛)), (1st ‘(𝐹‘𝑛)))〉) |
| 78 | 73 | anim1i 592 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ (ℕ ∖ 𝐴) ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛))) → (𝑛 ∈ ℕ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) |
| 79 | 78, 59 | sylibr 224 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ (ℕ ∖ 𝐴) ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛))) → 𝑛 ∈ {𝑛 ∈ ℕ ∣ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛))}) |
| 80 | 79, 57 | sylibr 224 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ (ℕ ∖ 𝐴) ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛))) → 𝑛 ∈ 𝐴) |
| 81 | 80 | adantll 750 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) ∧ (1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛))) → 𝑛 ∈ 𝐴) |
| 82 | | eldifn 3733 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (ℕ ∖ 𝐴) → ¬ 𝑛 ∈ 𝐴) |
| 83 | 82 | ad2antlr 763 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) ∧ (1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛))) → ¬ 𝑛 ∈ 𝐴) |
| 84 | 81, 83 | pm2.65da 600 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → ¬ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛))) |
| 85 | 84 | iffalsed 4097 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → if((1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛)), (1st ‘(𝐹‘𝑛))) = (1st ‘(𝐹‘𝑛))) |
| 86 | 85 | opeq2d 4409 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → 〈(1st
‘(𝐹‘𝑛)), if((1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)), (2nd
‘(𝐹‘𝑛)), (1st
‘(𝐹‘𝑛)))〉 =
〈(1st ‘(𝐹‘𝑛)), (1st ‘(𝐹‘𝑛))〉) |
| 87 | 77, 86 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → (𝐺‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), (1st ‘(𝐹‘𝑛))〉) |
| 88 | 87 | fveq2d 6195 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → ((,)‘(𝐺‘𝑛)) = ((,)‘〈(1st
‘(𝐹‘𝑛)), (1st
‘(𝐹‘𝑛))〉)) |
| 89 | | iooid 12203 |
. . . . . . . . . . . 12
⊢
((1st ‘(𝐹‘𝑛))(,)(1st ‘(𝐹‘𝑛))) = ∅ |
| 90 | 89 | eqcomi 2631 |
. . . . . . . . . . 11
⊢ ∅ =
((1st ‘(𝐹‘𝑛))(,)(1st ‘(𝐹‘𝑛))) |
| 91 | | df-ov 6653 |
. . . . . . . . . . 11
⊢
((1st ‘(𝐹‘𝑛))(,)(1st ‘(𝐹‘𝑛))) = ((,)‘〈(1st
‘(𝐹‘𝑛)), (1st
‘(𝐹‘𝑛))〉) |
| 92 | 90, 91 | eqtr2i 2645 |
. . . . . . . . . 10
⊢
((,)‘〈(1st ‘(𝐹‘𝑛)), (1st ‘(𝐹‘𝑛))〉) = ∅ |
| 93 | 92 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → ((,)‘〈(1st
‘(𝐹‘𝑛)), (1st
‘(𝐹‘𝑛))〉) =
∅) |
| 94 | 75, 88, 93 | 3eqtrd 2660 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐺)‘𝑛) = ∅) |
| 95 | 94 | iuneq2dv 4542 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛) = ∪ 𝑛 ∈ (ℕ ∖ 𝐴)∅) |
| 96 | | iun0 4576 |
. . . . . . . 8
⊢ ∪ 𝑛 ∈ (ℕ ∖ 𝐴)∅ = ∅ |
| 97 | 96 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝑛 ∈ (ℕ ∖ 𝐴)∅ = ∅) |
| 98 | 95, 97 | eqtrd 2656 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛) = ∅) |
| 99 | 76, 3 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → 𝐹:ℕ⟶(ℝ* ×
ℝ*)) |
| 100 | 99, 74, 47 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹‘𝑛))) |
| 101 | 76, 74, 51 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → (𝐹‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) |
| 102 | 101 | fveq2d 6195 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → ((,)‘(𝐹‘𝑛)) = ((,)‘〈(1st
‘(𝐹‘𝑛)), (2nd
‘(𝐹‘𝑛))〉)) |
| 103 | | df-ov 6653 |
. . . . . . . . . . 11
⊢
((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛))) = ((,)‘〈(1st
‘(𝐹‘𝑛)), (2nd
‘(𝐹‘𝑛))〉) |
| 104 | 103 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → ((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛))) = ((,)‘〈(1st
‘(𝐹‘𝑛)), (2nd
‘(𝐹‘𝑛))〉)) |
| 105 | | simplr 792 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹‘𝑛)) ≤ (1st ‘(𝐹‘𝑛))) → 𝑛 ∈ (ℕ ∖ 𝐴)) |
| 106 | 74, 23 | syldan 487 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → (1st ‘(𝐹‘𝑛)) ∈
ℝ*) |
| 107 | 106 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹‘𝑛)) ≤ (1st ‘(𝐹‘𝑛))) → (1st ‘(𝐹‘𝑛)) ∈
ℝ*) |
| 108 | 74, 25 | syldan 487 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → (2nd ‘(𝐹‘𝑛)) ∈
ℝ*) |
| 109 | 108 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹‘𝑛)) ≤ (1st ‘(𝐹‘𝑛))) → (2nd ‘(𝐹‘𝑛)) ∈
ℝ*) |
| 110 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹‘𝑛)) ≤ (1st ‘(𝐹‘𝑛))) → ¬ (2nd
‘(𝐹‘𝑛)) ≤ (1st
‘(𝐹‘𝑛))) |
| 111 | 107, 109 | xrltnled 39579 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹‘𝑛)) ≤ (1st ‘(𝐹‘𝑛))) → ((1st ‘(𝐹‘𝑛)) < (2nd ‘(𝐹‘𝑛)) ↔ ¬ (2nd ‘(𝐹‘𝑛)) ≤ (1st ‘(𝐹‘𝑛)))) |
| 112 | 110, 111 | mpbird 247 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹‘𝑛)) ≤ (1st ‘(𝐹‘𝑛))) → (1st ‘(𝐹‘𝑛)) < (2nd ‘(𝐹‘𝑛))) |
| 113 | 107, 109,
112 | xrltled 39486 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹‘𝑛)) ≤ (1st ‘(𝐹‘𝑛))) → (1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛))) |
| 114 | 105, 113,
80 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹‘𝑛)) ≤ (1st ‘(𝐹‘𝑛))) → 𝑛 ∈ 𝐴) |
| 115 | 82 | ad2antlr 763 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹‘𝑛)) ≤ (1st ‘(𝐹‘𝑛))) → ¬ 𝑛 ∈ 𝐴) |
| 116 | 114, 115 | condan 835 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → (2nd ‘(𝐹‘𝑛)) ≤ (1st ‘(𝐹‘𝑛))) |
| 117 | | ioo0 12200 |
. . . . . . . . . . . 12
⊢
(((1st ‘(𝐹‘𝑛)) ∈ ℝ* ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ*) →
(((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛))) = ∅ ↔ (2nd
‘(𝐹‘𝑛)) ≤ (1st
‘(𝐹‘𝑛)))) |
| 118 | 106, 108,
117 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → (((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛))) = ∅ ↔ (2nd
‘(𝐹‘𝑛)) ≤ (1st
‘(𝐹‘𝑛)))) |
| 119 | 116, 118 | mpbird 247 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → ((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛))) = ∅) |
| 120 | 104, 119 | eqtr3d 2658 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → ((,)‘〈(1st
‘(𝐹‘𝑛)), (2nd
‘(𝐹‘𝑛))〉) =
∅) |
| 121 | 100, 102,
120 | 3eqtrd 2660 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐹)‘𝑛) = ∅) |
| 122 | 121 | iuneq2dv 4542 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛) = ∪ 𝑛 ∈ (ℕ ∖ 𝐴)∅) |
| 123 | 122, 97 | eqtrd 2656 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛) = ∅) |
| 124 | 98, 123 | eqtr4d 2659 |
. . . . 5
⊢ (𝜑 → ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛) = ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛)) |
| 125 | 71, 124 | uneq12d 3768 |
. . . 4
⊢ (𝜑 → (∪ 𝑛 ∈ 𝐴 (((,) ∘ 𝐺)‘𝑛) ∪ ∪
𝑛 ∈ (ℕ ∖
𝐴)(((,) ∘ 𝐺)‘𝑛)) = (∪
𝑛 ∈ 𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ ∪
𝑛 ∈ (ℕ ∖
𝐴)(((,) ∘ 𝐹)‘𝑛))) |
| 126 | 36, 40, 125 | 3eqtrrd 2661 |
. . 3
⊢ (𝜑 → (∪ 𝑛 ∈ 𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ ∪
𝑛 ∈ (ℕ ∖
𝐴)(((,) ∘ 𝐹)‘𝑛)) = ∪ ran ((,)
∘ 𝐺)) |
| 127 | 10, 20, 126 | 3eqtrd 2660 |
. 2
⊢ (𝜑 → ∪ ran ((,) ∘ 𝐹) = ∪ ran ((,)
∘ 𝐺)) |
| 128 | | volf 23297 |
. . . . . 6
⊢ vol:dom
vol⟶(0[,]+∞) |
| 129 | 128 | a1i 11 |
. . . . 5
⊢ (𝜑 → vol:dom
vol⟶(0[,]+∞)) |
| 130 | 3 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐹:ℕ⟶(ℝ* ×
ℝ*)) |
| 131 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 132 | 130, 131,
47 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹‘𝑛))) |
| 133 | 51 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐹‘𝑛)) = ((,)‘〈(1st
‘(𝐹‘𝑛)), (2nd
‘(𝐹‘𝑛))〉)) |
| 134 | 103 | eqcomi 2631 |
. . . . . . . . . . 11
⊢
((,)‘〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) = ((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛))) |
| 135 | 134 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
((,)‘〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) = ((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛)))) |
| 136 | 132, 133,
135 | 3eqtrd 2660 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛)))) |
| 137 | | ioombl 23333 |
. . . . . . . . . 10
⊢
((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛))) ∈ dom vol |
| 138 | 137 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛))(,)(2nd
‘(𝐹‘𝑛))) ∈ dom
vol) |
| 139 | 136, 138 | eqeltrd 2701 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) ∈ dom vol) |
| 140 | 139 | ralrimiva 2966 |
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ∈ dom vol) |
| 141 | 7, 140 | jca 554 |
. . . . . 6
⊢ (𝜑 → (((,) ∘ 𝐹) Fn ℕ ∧ ∀𝑛 ∈ ℕ (((,) ∘
𝐹)‘𝑛) ∈ dom vol)) |
| 142 | | ffnfv 6388 |
. . . . . 6
⊢ (((,)
∘ 𝐹):ℕ⟶dom vol ↔ (((,)
∘ 𝐹) Fn ℕ ∧
∀𝑛 ∈ ℕ
(((,) ∘ 𝐹)‘𝑛) ∈ dom vol)) |
| 143 | 141, 142 | sylibr 224 |
. . . . 5
⊢ (𝜑 → ((,) ∘ 𝐹):ℕ⟶dom
vol) |
| 144 | | fco 6058 |
. . . . 5
⊢ ((vol:dom
vol⟶(0[,]+∞) ∧ ((,) ∘ 𝐹):ℕ⟶dom vol) → (vol
∘ ((,) ∘ 𝐹)):ℕ⟶(0[,]+∞)) |
| 145 | 129, 143,
144 | syl2anc 693 |
. . . 4
⊢ (𝜑 → (vol ∘ ((,) ∘
𝐹)):ℕ⟶(0[,]+∞)) |
| 146 | | ffn 6045 |
. . . 4
⊢ ((vol
∘ ((,) ∘ 𝐹)):ℕ⟶(0[,]+∞) → (vol
∘ ((,) ∘ 𝐹)) Fn
ℕ) |
| 147 | 145, 146 | syl 17 |
. . 3
⊢ (𝜑 → (vol ∘ ((,) ∘
𝐹)) Fn
ℕ) |
| 148 | 70 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ 𝐴) → (((,) ∘ 𝐺)‘𝑛) = (((,) ∘ 𝐹)‘𝑛)) |
| 149 | 139 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ 𝐴) → (((,) ∘ 𝐹)‘𝑛) ∈ dom vol) |
| 150 | 148, 149 | eqeltrd 2701 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ 𝐴) → (((,) ∘ 𝐺)‘𝑛) ∈ dom vol) |
| 151 | | simpll 790 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ 𝑛 ∈ 𝐴) → 𝜑) |
| 152 | | eldif 3584 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (ℕ ∖ 𝐴) ↔ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐴)) |
| 153 | 152 | bicomi 214 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ ∧ ¬
𝑛 ∈ 𝐴) ↔ 𝑛 ∈ (ℕ ∖ 𝐴)) |
| 154 | 153 | biimpi 206 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ ¬
𝑛 ∈ 𝐴) → 𝑛 ∈ (ℕ ∖ 𝐴)) |
| 155 | 154 | adantll 750 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ 𝑛 ∈ 𝐴) → 𝑛 ∈ (ℕ ∖ 𝐴)) |
| 156 | 119, 137 | syl6eqelr 2710 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → ∅ ∈ dom
vol) |
| 157 | 94, 156 | eqeltrd 2701 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐺)‘𝑛) ∈ dom vol) |
| 158 | 151, 155,
157 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ 𝑛 ∈ 𝐴) → (((,) ∘ 𝐺)‘𝑛) ∈ dom vol) |
| 159 | 150, 158 | pm2.61dan 832 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐺)‘𝑛) ∈ dom vol) |
| 160 | 159 | ralrimiva 2966 |
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) ∈ dom vol) |
| 161 | 33, 160 | jca 554 |
. . . . . 6
⊢ (𝜑 → (((,) ∘ 𝐺) Fn ℕ ∧ ∀𝑛 ∈ ℕ (((,) ∘
𝐺)‘𝑛) ∈ dom vol)) |
| 162 | | ffnfv 6388 |
. . . . . 6
⊢ (((,)
∘ 𝐺):ℕ⟶dom vol ↔ (((,)
∘ 𝐺) Fn ℕ ∧
∀𝑛 ∈ ℕ
(((,) ∘ 𝐺)‘𝑛) ∈ dom vol)) |
| 163 | 161, 162 | sylibr 224 |
. . . . 5
⊢ (𝜑 → ((,) ∘ 𝐺):ℕ⟶dom
vol) |
| 164 | | fco 6058 |
. . . . 5
⊢ ((vol:dom
vol⟶(0[,]+∞) ∧ ((,) ∘ 𝐺):ℕ⟶dom vol) → (vol
∘ ((,) ∘ 𝐺)):ℕ⟶(0[,]+∞)) |
| 165 | 129, 163,
164 | syl2anc 693 |
. . . 4
⊢ (𝜑 → (vol ∘ ((,) ∘
𝐺)):ℕ⟶(0[,]+∞)) |
| 166 | | ffn 6045 |
. . . 4
⊢ ((vol
∘ ((,) ∘ 𝐺)):ℕ⟶(0[,]+∞) → (vol
∘ ((,) ∘ 𝐺)) Fn
ℕ) |
| 167 | 165, 166 | syl 17 |
. . 3
⊢ (𝜑 → (vol ∘ ((,) ∘
𝐺)) Fn
ℕ) |
| 168 | 148 | eqcomd 2628 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ 𝐴) → (((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐺)‘𝑛)) |
| 169 | 121, 94 | eqtr4d 2659 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐺)‘𝑛)) |
| 170 | 151, 155,
169 | syl2anc 693 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ 𝑛 ∈ 𝐴) → (((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐺)‘𝑛)) |
| 171 | 168, 170 | pm2.61dan 832 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐺)‘𝑛)) |
| 172 | 171 | fveq2d 6195 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol‘(((,)
∘ 𝐹)‘𝑛)) = (vol‘(((,) ∘
𝐺)‘𝑛))) |
| 173 | | fnfun 5988 |
. . . . . . 7
⊢ (((,)
∘ 𝐹) Fn ℕ
→ Fun ((,) ∘ 𝐹)) |
| 174 | 7, 173 | syl 17 |
. . . . . 6
⊢ (𝜑 → Fun ((,) ∘ 𝐹)) |
| 175 | 174 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Fun ((,) ∘
𝐹)) |
| 176 | | fdm 6051 |
. . . . . . . . 9
⊢ (((,)
∘ 𝐹):ℕ⟶dom vol → dom ((,)
∘ 𝐹) =
ℕ) |
| 177 | 143, 176 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → dom ((,) ∘ 𝐹) = ℕ) |
| 178 | 177 | eqcomd 2628 |
. . . . . . 7
⊢ (𝜑 → ℕ = dom ((,) ∘
𝐹)) |
| 179 | 178 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ℕ = dom ((,)
∘ 𝐹)) |
| 180 | 131, 179 | eleqtrd 2703 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ dom ((,) ∘ 𝐹)) |
| 181 | | fvco 6274 |
. . . . 5
⊢ ((Fun
((,) ∘ 𝐹) ∧ 𝑛 ∈ dom ((,) ∘ 𝐹)) → ((vol ∘ ((,)
∘ 𝐹))‘𝑛) = (vol‘(((,) ∘
𝐹)‘𝑛))) |
| 182 | 175, 180,
181 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((vol ∘ ((,)
∘ 𝐹))‘𝑛) = (vol‘(((,) ∘
𝐹)‘𝑛))) |
| 183 | | fnfun 5988 |
. . . . . . 7
⊢ (((,)
∘ 𝐺) Fn ℕ
→ Fun ((,) ∘ 𝐺)) |
| 184 | 33, 183 | syl 17 |
. . . . . 6
⊢ (𝜑 → Fun ((,) ∘ 𝐺)) |
| 185 | 184 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Fun ((,) ∘
𝐺)) |
| 186 | | fdm 6051 |
. . . . . . . . 9
⊢ (((,)
∘ 𝐺):ℕ⟶dom vol → dom ((,)
∘ 𝐺) =
ℕ) |
| 187 | 163, 186 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → dom ((,) ∘ 𝐺) = ℕ) |
| 188 | 187 | eqcomd 2628 |
. . . . . . 7
⊢ (𝜑 → ℕ = dom ((,) ∘
𝐺)) |
| 189 | 188 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ℕ = dom ((,)
∘ 𝐺)) |
| 190 | 131, 189 | eleqtrd 2703 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ dom ((,) ∘ 𝐺)) |
| 191 | | fvco 6274 |
. . . . 5
⊢ ((Fun
((,) ∘ 𝐺) ∧ 𝑛 ∈ dom ((,) ∘ 𝐺)) → ((vol ∘ ((,)
∘ 𝐺))‘𝑛) = (vol‘(((,) ∘
𝐺)‘𝑛))) |
| 192 | 185, 190,
191 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((vol ∘ ((,)
∘ 𝐺))‘𝑛) = (vol‘(((,) ∘
𝐺)‘𝑛))) |
| 193 | 172, 182,
192 | 3eqtr4d 2666 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((vol ∘ ((,)
∘ 𝐹))‘𝑛) = ((vol ∘ ((,) ∘
𝐺))‘𝑛)) |
| 194 | 147, 167,
193 | eqfnfvd 6314 |
. 2
⊢ (𝜑 → (vol ∘ ((,) ∘
𝐹)) = (vol ∘ ((,)
∘ 𝐺))) |
| 195 | 127, 194 | jca 554 |
1
⊢ (𝜑 → (∪ ran ((,) ∘ 𝐹) = ∪ ran ((,)
∘ 𝐺) ∧ (vol
∘ ((,) ∘ 𝐹)) =
(vol ∘ ((,) ∘ 𝐺)))) |