Proof of Theorem ppiublem1
| Step | Hyp | Ref
| Expression |
| 1 | | ppiublem1.1 |
. . . . . 6
⊢ (𝑁 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5}))) |
| 2 | 1 | simpli 474 |
. . . . 5
⊢ 𝑁 ≤ 6 |
| 3 | | ppiublem1.3 |
. . . . 5
⊢ 𝑁 = (𝑀 + 1) |
| 4 | | df-6 11083 |
. . . . 5
⊢ 6 = (5 +
1) |
| 5 | 2, 3, 4 | 3brtr3i 4682 |
. . . 4
⊢ (𝑀 + 1) ≤ (5 +
1) |
| 6 | | ppiublem1.2 |
. . . . . 6
⊢ 𝑀 ∈
ℕ0 |
| 7 | 6 | nn0rei 11303 |
. . . . 5
⊢ 𝑀 ∈ ℝ |
| 8 | | 5re 11099 |
. . . . 5
⊢ 5 ∈
ℝ |
| 9 | | 1re 10039 |
. . . . 5
⊢ 1 ∈
ℝ |
| 10 | 7, 8, 9 | leadd1i 10583 |
. . . 4
⊢ (𝑀 ≤ 5 ↔ (𝑀 + 1) ≤ (5 +
1)) |
| 11 | 5, 10 | mpbir 221 |
. . 3
⊢ 𝑀 ≤ 5 |
| 12 | | 6re 11101 |
. . . 4
⊢ 6 ∈
ℝ |
| 13 | | 5lt6 11204 |
. . . 4
⊢ 5 <
6 |
| 14 | 8, 12, 13 | ltleii 10160 |
. . 3
⊢ 5 ≤
6 |
| 15 | 7, 8, 12 | letri 10166 |
. . 3
⊢ ((𝑀 ≤ 5 ∧ 5 ≤ 6) →
𝑀 ≤ 6) |
| 16 | 11, 14, 15 | mp2an 708 |
. 2
⊢ 𝑀 ≤ 6 |
| 17 | 6 | nn0zi 11402 |
. . . . 5
⊢ 𝑀 ∈ ℤ |
| 18 | | 5nn 11188 |
. . . . . 6
⊢ 5 ∈
ℕ |
| 19 | 18 | nnzi 11401 |
. . . . 5
⊢ 5 ∈
ℤ |
| 20 | | eluz2 11693 |
. . . . 5
⊢ (5 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 5 ∈ ℤ ∧
𝑀 ≤ 5)) |
| 21 | 17, 19, 11, 20 | mpbir3an 1244 |
. . . 4
⊢ 5 ∈
(ℤ≥‘𝑀) |
| 22 | | elfzp12 12419 |
. . . 4
⊢ (5 ∈
(ℤ≥‘𝑀) → ((𝑃 mod 6) ∈ (𝑀...5) ↔ ((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5)))) |
| 23 | 21, 22 | ax-mp 5 |
. . 3
⊢ ((𝑃 mod 6) ∈ (𝑀...5) ↔ ((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5))) |
| 24 | | ppiublem1.4 |
. . . . 5
⊢ (2
∥ 𝑀 ∨ 3 ∥
𝑀 ∨ 𝑀 ∈ {1, 5}) |
| 25 | | prmz 15389 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
| 26 | 25 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → 𝑃 ∈ ℤ) |
| 27 | | 2nn 11185 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ |
| 28 | | 6nn 11189 |
. . . . . . . . . . . 12
⊢ 6 ∈
ℕ |
| 29 | | 3z 11410 |
. . . . . . . . . . . . . . 15
⊢ 3 ∈
ℤ |
| 30 | | 2z 11409 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℤ |
| 31 | | dvdsmul2 15004 |
. . . . . . . . . . . . . . 15
⊢ ((3
∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (3 ·
2)) |
| 32 | 29, 30, 31 | mp2an 708 |
. . . . . . . . . . . . . 14
⊢ 2 ∥
(3 · 2) |
| 33 | | 3t2e6 11179 |
. . . . . . . . . . . . . 14
⊢ (3
· 2) = 6 |
| 34 | 32, 33 | breqtri 4678 |
. . . . . . . . . . . . 13
⊢ 2 ∥
6 |
| 35 | | dvdsmod 15050 |
. . . . . . . . . . . . 13
⊢ (((2
∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) ∧ 2 ∥ 6) →
(2 ∥ (𝑃 mod 6) ↔
2 ∥ 𝑃)) |
| 36 | 34, 35 | mpan2 707 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃)) |
| 37 | 27, 28, 36 | mp3an12 1414 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℤ → (2
∥ (𝑃 mod 6) ↔ 2
∥ 𝑃)) |
| 38 | 26, 37 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃)) |
| 39 | | uzid 11702 |
. . . . . . . . . . . 12
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) |
| 40 | 30, 39 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 2 ∈
(ℤ≥‘2) |
| 41 | | simpl 473 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → 𝑃 ∈ ℙ) |
| 42 | | dvdsprm 15415 |
. . . . . . . . . . 11
⊢ ((2
∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃)) |
| 43 | 40, 41, 42 | sylancr 695 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (2 ∥ 𝑃 ↔ 2 = 𝑃)) |
| 44 | 38, 43 | bitrd 268 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (2 ∥ (𝑃 mod 6) ↔ 2 = 𝑃)) |
| 45 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → 4 ≤ 𝑃) |
| 46 | | breq2 4657 |
. . . . . . . . . . 11
⊢ (2 =
𝑃 → (4 ≤ 2 ↔ 4
≤ 𝑃)) |
| 47 | 45, 46 | syl5ibrcom 237 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (2 = 𝑃 → 4 ≤
2)) |
| 48 | | 2lt4 11198 |
. . . . . . . . . . . 12
⊢ 2 <
4 |
| 49 | | 2re 11090 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ |
| 50 | | 4re 11097 |
. . . . . . . . . . . . 13
⊢ 4 ∈
ℝ |
| 51 | 49, 50 | ltnlei 10158 |
. . . . . . . . . . . 12
⊢ (2 < 4
↔ ¬ 4 ≤ 2) |
| 52 | 48, 51 | mpbi 220 |
. . . . . . . . . . 11
⊢ ¬ 4
≤ 2 |
| 53 | 52 | pm2.21i 116 |
. . . . . . . . . 10
⊢ (4 ≤ 2
→ (𝑃 mod 6) ∈ {1,
5}) |
| 54 | 47, 53 | syl6 35 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (2 = 𝑃 → (𝑃 mod 6) ∈ {1, 5})) |
| 55 | 44, 54 | sylbid 230 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (2 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1,
5})) |
| 56 | | breq2 4657 |
. . . . . . . . 9
⊢ ((𝑃 mod 6) = 𝑀 → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑀)) |
| 57 | 56 | imbi1d 331 |
. . . . . . . 8
⊢ ((𝑃 mod 6) = 𝑀 → ((2 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}) ↔ (2 ∥
𝑀 → (𝑃 mod 6) ∈ {1, 5}))) |
| 58 | 55, 57 | syl5ibcom 235 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) = 𝑀 → (2 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5}))) |
| 59 | 58 | com3r 87 |
. . . . . 6
⊢ (2
∥ 𝑀 → ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5}))) |
| 60 | | 3nn 11186 |
. . . . . . . . . . . 12
⊢ 3 ∈
ℕ |
| 61 | | dvdsmul1 15003 |
. . . . . . . . . . . . . . 15
⊢ ((3
∈ ℤ ∧ 2 ∈ ℤ) → 3 ∥ (3 ·
2)) |
| 62 | 29, 30, 61 | mp2an 708 |
. . . . . . . . . . . . . 14
⊢ 3 ∥
(3 · 2) |
| 63 | 62, 33 | breqtri 4678 |
. . . . . . . . . . . . 13
⊢ 3 ∥
6 |
| 64 | | dvdsmod 15050 |
. . . . . . . . . . . . 13
⊢ (((3
∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) ∧ 3 ∥ 6) →
(3 ∥ (𝑃 mod 6) ↔
3 ∥ 𝑃)) |
| 65 | 63, 64 | mpan2 707 |
. . . . . . . . . . . 12
⊢ ((3
∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃)) |
| 66 | 60, 28, 65 | mp3an12 1414 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℤ → (3
∥ (𝑃 mod 6) ↔ 3
∥ 𝑃)) |
| 67 | 26, 66 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃)) |
| 68 | | df-3 11080 |
. . . . . . . . . . . 12
⊢ 3 = (2 +
1) |
| 69 | | peano2uz 11741 |
. . . . . . . . . . . . 13
⊢ (2 ∈
(ℤ≥‘2) → (2 + 1) ∈
(ℤ≥‘2)) |
| 70 | 40, 69 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (2 + 1)
∈ (ℤ≥‘2) |
| 71 | 68, 70 | eqeltri 2697 |
. . . . . . . . . . 11
⊢ 3 ∈
(ℤ≥‘2) |
| 72 | | dvdsprm 15415 |
. . . . . . . . . . 11
⊢ ((3
∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ) → (3 ∥ 𝑃 ↔ 3 = 𝑃)) |
| 73 | 71, 41, 72 | sylancr 695 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (3 ∥ 𝑃 ↔ 3 = 𝑃)) |
| 74 | 67, 73 | bitrd 268 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (3 ∥ (𝑃 mod 6) ↔ 3 = 𝑃)) |
| 75 | | breq2 4657 |
. . . . . . . . . . 11
⊢ (3 =
𝑃 → (4 ≤ 3 ↔ 4
≤ 𝑃)) |
| 76 | 45, 75 | syl5ibrcom 237 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (3 = 𝑃 → 4 ≤
3)) |
| 77 | | 3lt4 11197 |
. . . . . . . . . . . 12
⊢ 3 <
4 |
| 78 | | 3re 11094 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℝ |
| 79 | 78, 50 | ltnlei 10158 |
. . . . . . . . . . . 12
⊢ (3 < 4
↔ ¬ 4 ≤ 3) |
| 80 | 77, 79 | mpbi 220 |
. . . . . . . . . . 11
⊢ ¬ 4
≤ 3 |
| 81 | 80 | pm2.21i 116 |
. . . . . . . . . 10
⊢ (4 ≤ 3
→ (𝑃 mod 6) ∈ {1,
5}) |
| 82 | 76, 81 | syl6 35 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (3 = 𝑃 → (𝑃 mod 6) ∈ {1, 5})) |
| 83 | 74, 82 | sylbid 230 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (3 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1,
5})) |
| 84 | | breq2 4657 |
. . . . . . . . 9
⊢ ((𝑃 mod 6) = 𝑀 → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑀)) |
| 85 | 84 | imbi1d 331 |
. . . . . . . 8
⊢ ((𝑃 mod 6) = 𝑀 → ((3 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}) ↔ (3 ∥
𝑀 → (𝑃 mod 6) ∈ {1, 5}))) |
| 86 | 83, 85 | syl5ibcom 235 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) = 𝑀 → (3 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5}))) |
| 87 | 86 | com3r 87 |
. . . . . 6
⊢ (3
∥ 𝑀 → ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5}))) |
| 88 | | eleq1a 2696 |
. . . . . . 7
⊢ (𝑀 ∈ {1, 5} → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})) |
| 89 | 88 | a1d 25 |
. . . . . 6
⊢ (𝑀 ∈ {1, 5} → ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5}))) |
| 90 | 59, 87, 89 | 3jaoi 1391 |
. . . . 5
⊢ ((2
∥ 𝑀 ∨ 3 ∥
𝑀 ∨ 𝑀 ∈ {1, 5}) → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5}))) |
| 91 | 24, 90 | ax-mp 5 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})) |
| 92 | 3 | oveq1i 6660 |
. . . . . 6
⊢ (𝑁...5) = ((𝑀 + 1)...5) |
| 93 | 92 | eleq2i 2693 |
. . . . 5
⊢ ((𝑃 mod 6) ∈ (𝑁...5) ↔ (𝑃 mod 6) ∈ ((𝑀 + 1)...5)) |
| 94 | 1 | simpri 478 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5})) |
| 95 | 93, 94 | syl5bir 233 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) ∈ ((𝑀 + 1)...5) → (𝑃 mod 6) ∈ {1,
5})) |
| 96 | 91, 95 | jaod 395 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5)) → (𝑃 mod 6) ∈ {1, 5})) |
| 97 | 23, 96 | syl5bi 232 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5})) |
| 98 | 16, 97 | pm3.2i 471 |
1
⊢ (𝑀 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5}))) |