MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmcyg Structured version   Visualization version   Unicode version

Theorem prmcyg 18295
Description: A group with prime order is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypothesis
Ref Expression
cygctb.1  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
prmcyg  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  Prime )  ->  G  e. CycGrp )

Proof of Theorem prmcyg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 1nprm 15392 . . . 4  |-  -.  1  e.  Prime
2 simpr 477 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  B  C_  { ( 0g `  G ) } )  ->  B  C_ 
{ ( 0g `  G ) } )
3 cygctb.1 . . . . . . . . . . . 12  |-  B  =  ( Base `  G
)
4 eqid 2622 . . . . . . . . . . . 12  |-  ( 0g
`  G )  =  ( 0g `  G
)
53, 4grpidcl 17450 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
65snssd 4340 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  { ( 0g `  G ) }  C_  B )
76ad2antrr 762 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  B  C_  { ( 0g `  G ) } )  ->  { ( 0g `  G ) }  C_  B )
82, 7eqssd 3620 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  B  C_  { ( 0g `  G ) } )  ->  B  =  { ( 0g `  G ) } )
98fveq2d 6195 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  B  C_  { ( 0g `  G ) } )  ->  ( # `
 B )  =  ( # `  {
( 0g `  G
) } ) )
10 fvex 6201 . . . . . . . 8  |-  ( 0g
`  G )  e. 
_V
11 hashsng 13159 . . . . . . . 8  |-  ( ( 0g `  G )  e.  _V  ->  ( # `
 { ( 0g
`  G ) } )  =  1 )
1210, 11ax-mp 5 . . . . . . 7  |-  ( # `  { ( 0g `  G ) } )  =  1
139, 12syl6eq 2672 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  B  C_  { ( 0g `  G ) } )  ->  ( # `
 B )  =  1 )
14 simplr 792 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  B  C_  { ( 0g `  G ) } )  ->  ( # `
 B )  e. 
Prime )
1513, 14eqeltrrd 2702 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  B  C_  { ( 0g `  G ) } )  ->  1  e.  Prime )
1615ex 450 . . . 4  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  Prime )  ->  ( B  C_  { ( 0g
`  G ) }  ->  1  e.  Prime ) )
171, 16mtoi 190 . . 3  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  Prime )  ->  -.  B  C_  { ( 0g
`  G ) } )
18 nss 3663 . . 3  |-  ( -.  B  C_  { ( 0g `  G ) }  <->  E. x ( x  e.  B  /\  -.  x  e.  { ( 0g `  G ) } ) )
1917, 18sylib 208 . 2  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  Prime )  ->  E. x
( x  e.  B  /\  -.  x  e.  {
( 0g `  G
) } ) )
20 eqid 2622 . . 3  |-  ( od
`  G )  =  ( od `  G
)
21 simpll 790 . . 3  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  ( x  e.  B  /\  -.  x  e.  {
( 0g `  G
) } ) )  ->  G  e.  Grp )
22 simprl 794 . . 3  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  ( x  e.  B  /\  -.  x  e.  {
( 0g `  G
) } ) )  ->  x  e.  B
)
23 simprr 796 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  ( x  e.  B  /\  -.  x  e.  {
( 0g `  G
) } ) )  ->  -.  x  e.  { ( 0g `  G
) } )
2420, 4, 3odeq1 17977 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( ( od
`  G ) `  x )  =  1  <-> 
x  =  ( 0g
`  G ) ) )
2521, 22, 24syl2anc 693 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  ( x  e.  B  /\  -.  x  e.  {
( 0g `  G
) } ) )  ->  ( ( ( od `  G ) `
 x )  =  1  <->  x  =  ( 0g `  G ) ) )
26 velsn 4193 . . . . . 6  |-  ( x  e.  { ( 0g
`  G ) }  <-> 
x  =  ( 0g
`  G ) )
2725, 26syl6bbr 278 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  ( x  e.  B  /\  -.  x  e.  {
( 0g `  G
) } ) )  ->  ( ( ( od `  G ) `
 x )  =  1  <->  x  e.  { ( 0g `  G ) } ) )
2823, 27mtbird 315 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  ( x  e.  B  /\  -.  x  e.  {
( 0g `  G
) } ) )  ->  -.  ( ( od `  G ) `  x )  =  1 )
29 prmnn 15388 . . . . . . . . . 10  |-  ( (
# `  B )  e.  Prime  ->  ( # `  B
)  e.  NN )
3029ad2antlr 763 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  ( x  e.  B  /\  -.  x  e.  {
( 0g `  G
) } ) )  ->  ( # `  B
)  e.  NN )
3130nnnn0d 11351 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  ( x  e.  B  /\  -.  x  e.  {
( 0g `  G
) } ) )  ->  ( # `  B
)  e.  NN0 )
32 fvex 6201 . . . . . . . . . 10  |-  ( Base `  G )  e.  _V
333, 32eqeltri 2697 . . . . . . . . 9  |-  B  e. 
_V
34 hashclb 13149 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( B  e.  Fin  <->  ( # `  B
)  e.  NN0 )
)
3533, 34ax-mp 5 . . . . . . . 8  |-  ( B  e.  Fin  <->  ( # `  B
)  e.  NN0 )
3631, 35sylibr 224 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  ( x  e.  B  /\  -.  x  e.  {
( 0g `  G
) } ) )  ->  B  e.  Fin )
373, 20oddvds2 17983 . . . . . . 7  |-  ( ( G  e.  Grp  /\  B  e.  Fin  /\  x  e.  B )  ->  (
( od `  G
) `  x )  ||  ( # `  B
) )
3821, 36, 22, 37syl3anc 1326 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  ( x  e.  B  /\  -.  x  e.  {
( 0g `  G
) } ) )  ->  ( ( od
`  G ) `  x )  ||  ( # `
 B ) )
39 simplr 792 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  ( x  e.  B  /\  -.  x  e.  {
( 0g `  G
) } ) )  ->  ( # `  B
)  e.  Prime )
403, 20odcl2 17982 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  B  e.  Fin  /\  x  e.  B )  ->  (
( od `  G
) `  x )  e.  NN )
4121, 36, 22, 40syl3anc 1326 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  ( x  e.  B  /\  -.  x  e.  {
( 0g `  G
) } ) )  ->  ( ( od
`  G ) `  x )  e.  NN )
42 dvdsprime 15400 . . . . . . 7  |-  ( ( ( # `  B
)  e.  Prime  /\  (
( od `  G
) `  x )  e.  NN )  ->  (
( ( od `  G ) `  x
)  ||  ( # `  B
)  <->  ( ( ( od `  G ) `
 x )  =  ( # `  B
)  \/  ( ( od `  G ) `
 x )  =  1 ) ) )
4339, 41, 42syl2anc 693 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  ( x  e.  B  /\  -.  x  e.  {
( 0g `  G
) } ) )  ->  ( ( ( od `  G ) `
 x )  ||  ( # `  B )  <-> 
( ( ( od
`  G ) `  x )  =  (
# `  B )  \/  ( ( od `  G ) `  x
)  =  1 ) ) )
4438, 43mpbid 222 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  ( x  e.  B  /\  -.  x  e.  {
( 0g `  G
) } ) )  ->  ( ( ( od `  G ) `
 x )  =  ( # `  B
)  \/  ( ( od `  G ) `
 x )  =  1 ) )
4544ord 392 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  ( x  e.  B  /\  -.  x  e.  {
( 0g `  G
) } ) )  ->  ( -.  (
( od `  G
) `  x )  =  ( # `  B
)  ->  ( ( od `  G ) `  x )  =  1 ) )
4628, 45mt3d 140 . . 3  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  ( x  e.  B  /\  -.  x  e.  {
( 0g `  G
) } ) )  ->  ( ( od
`  G ) `  x )  =  (
# `  B )
)
473, 20, 21, 22, 46iscygodd 18290 . 2  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  e.  Prime )  /\  ( x  e.  B  /\  -.  x  e.  {
( 0g `  G
) } ) )  ->  G  e. CycGrp )
4819, 47exlimddv 1863 1  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  Prime )  ->  G  e. CycGrp )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    C_ wss 3574   {csn 4177   class class class wbr 4653   ` cfv 5888   Fincfn 7955   1c1 9937   NNcn 11020   NN0cn0 11292   #chash 13117    || cdvds 14983   Primecprime 15385   Basecbs 15857   0gc0g 16100   Grpcgrp 17422   odcod 17944  CycGrpccyg 18279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-prm 15386  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-eqg 17593  df-od 17948  df-cyg 18280
This theorem is referenced by:  lt6abl  18296
  Copyright terms: Public domain W3C validator