| Step | Hyp | Ref
| Expression |
| 1 | | zringring 19821 |
. . . . . 6
⊢
ℤring ∈ Ring |
| 2 | | prmirred.i |
. . . . . . 7
⊢ 𝐼 =
(Irred‘ℤring) |
| 3 | | zring1 19829 |
. . . . . . 7
⊢ 1 =
(1r‘ℤring) |
| 4 | 2, 3 | irredn1 18706 |
. . . . . 6
⊢
((ℤring ∈ Ring ∧ 𝐴 ∈ 𝐼) → 𝐴 ≠ 1) |
| 5 | 1, 4 | mpan 706 |
. . . . 5
⊢ (𝐴 ∈ 𝐼 → 𝐴 ≠ 1) |
| 6 | 5 | anim2i 593 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) → (𝐴 ∈ ℕ ∧ 𝐴 ≠ 1)) |
| 7 | | eluz2b3 11762 |
. . . 4
⊢ (𝐴 ∈
(ℤ≥‘2) ↔ (𝐴 ∈ ℕ ∧ 𝐴 ≠ 1)) |
| 8 | 6, 7 | sylibr 224 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) → 𝐴 ∈
(ℤ≥‘2)) |
| 9 | | nnz 11399 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) |
| 10 | 9 | ad2antrl 764 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → 𝑦 ∈ ℤ) |
| 11 | | simprr 796 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → 𝑦 ∥ 𝐴) |
| 12 | | nnne0 11053 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → 𝑦 ≠ 0) |
| 13 | 12 | ad2antrl 764 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → 𝑦 ≠ 0) |
| 14 | | nnz 11399 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
| 15 | 14 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → 𝐴 ∈ ℤ) |
| 16 | | dvdsval2 14986 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝑦 ∥ 𝐴 ↔ (𝐴 / 𝑦) ∈ ℤ)) |
| 17 | 10, 13, 15, 16 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → (𝑦 ∥ 𝐴 ↔ (𝐴 / 𝑦) ∈ ℤ)) |
| 18 | 11, 17 | mpbid 222 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → (𝐴 / 𝑦) ∈ ℤ) |
| 19 | 15 | zcnd 11483 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → 𝐴 ∈ ℂ) |
| 20 | | nncn 11028 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℂ) |
| 21 | 20 | ad2antrl 764 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → 𝑦 ∈ ℂ) |
| 22 | 19, 21, 13 | divcan2d 10803 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → (𝑦 · (𝐴 / 𝑦)) = 𝐴) |
| 23 | | simplr 792 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → 𝐴 ∈ 𝐼) |
| 24 | 22, 23 | eqeltrd 2701 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → (𝑦 · (𝐴 / 𝑦)) ∈ 𝐼) |
| 25 | | zringbas 19824 |
. . . . . . . 8
⊢ ℤ =
(Base‘ℤring) |
| 26 | | eqid 2622 |
. . . . . . . 8
⊢
(Unit‘ℤring) =
(Unit‘ℤring) |
| 27 | | zringmulr 19827 |
. . . . . . . 8
⊢ ·
= (.r‘ℤring) |
| 28 | 2, 25, 26, 27 | irredmul 18709 |
. . . . . . 7
⊢ ((𝑦 ∈ ℤ ∧ (𝐴 / 𝑦) ∈ ℤ ∧ (𝑦 · (𝐴 / 𝑦)) ∈ 𝐼) → (𝑦 ∈ (Unit‘ℤring)
∨ (𝐴 / 𝑦) ∈
(Unit‘ℤring))) |
| 29 | 10, 18, 24, 28 | syl3anc 1326 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → (𝑦 ∈ (Unit‘ℤring)
∨ (𝐴 / 𝑦) ∈
(Unit‘ℤring))) |
| 30 | | zringunit 19836 |
. . . . . . . . . 10
⊢ (𝑦 ∈
(Unit‘ℤring) ↔ (𝑦 ∈ ℤ ∧ (abs‘𝑦) = 1)) |
| 31 | 30 | baib 944 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℤ → (𝑦 ∈
(Unit‘ℤring) ↔ (abs‘𝑦) = 1)) |
| 32 | 10, 31 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → (𝑦 ∈ (Unit‘ℤring)
↔ (abs‘𝑦) =
1)) |
| 33 | | nnnn0 11299 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℕ0) |
| 34 | | nn0re 11301 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℝ) |
| 35 | | nn0ge0 11318 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ0
→ 0 ≤ 𝑦) |
| 36 | 34, 35 | absidd 14161 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ0
→ (abs‘𝑦) =
𝑦) |
| 37 | 33, 36 | syl 17 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ →
(abs‘𝑦) = 𝑦) |
| 38 | 37 | ad2antrl 764 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → (abs‘𝑦) = 𝑦) |
| 39 | 38 | eqeq1d 2624 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → ((abs‘𝑦) = 1 ↔ 𝑦 = 1)) |
| 40 | 32, 39 | bitrd 268 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → (𝑦 ∈ (Unit‘ℤring)
↔ 𝑦 =
1)) |
| 41 | | zringunit 19836 |
. . . . . . . . . 10
⊢ ((𝐴 / 𝑦) ∈ (Unit‘ℤring)
↔ ((𝐴 / 𝑦) ∈ ℤ ∧
(abs‘(𝐴 / 𝑦)) = 1)) |
| 42 | 41 | baib 944 |
. . . . . . . . 9
⊢ ((𝐴 / 𝑦) ∈ ℤ → ((𝐴 / 𝑦) ∈ (Unit‘ℤring)
↔ (abs‘(𝐴 /
𝑦)) = 1)) |
| 43 | 18, 42 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → ((𝐴 / 𝑦) ∈ (Unit‘ℤring)
↔ (abs‘(𝐴 /
𝑦)) = 1)) |
| 44 | | nnre 11027 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) |
| 45 | 44 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → 𝐴 ∈ ℝ) |
| 46 | | simprl 794 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → 𝑦 ∈ ℕ) |
| 47 | 45, 46 | nndivred 11069 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → (𝐴 / 𝑦) ∈ ℝ) |
| 48 | | nnnn0 11299 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℕ0) |
| 49 | | nn0ge0 11318 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℕ0
→ 0 ≤ 𝐴) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℕ → 0 ≤
𝐴) |
| 51 | 50 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → 0 ≤ 𝐴) |
| 52 | 46 | nnred 11035 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → 𝑦 ∈ ℝ) |
| 53 | | nngt0 11049 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → 0 <
𝑦) |
| 54 | 53 | ad2antrl 764 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → 0 < 𝑦) |
| 55 | | divge0 10892 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝑦 ∈ ℝ ∧ 0 <
𝑦)) → 0 ≤ (𝐴 / 𝑦)) |
| 56 | 45, 51, 52, 54, 55 | syl22anc 1327 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → 0 ≤ (𝐴 / 𝑦)) |
| 57 | 47, 56 | absidd 14161 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → (abs‘(𝐴 / 𝑦)) = (𝐴 / 𝑦)) |
| 58 | 57 | eqeq1d 2624 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → ((abs‘(𝐴 / 𝑦)) = 1 ↔ (𝐴 / 𝑦) = 1)) |
| 59 | | 1cnd 10056 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → 1 ∈ ℂ) |
| 60 | 19, 21, 59, 13 | divmuld 10823 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → ((𝐴 / 𝑦) = 1 ↔ (𝑦 · 1) = 𝐴)) |
| 61 | 21 | mulid1d 10057 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → (𝑦 · 1) = 𝑦) |
| 62 | 61 | eqeq1d 2624 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → ((𝑦 · 1) = 𝐴 ↔ 𝑦 = 𝐴)) |
| 63 | 58, 60, 62 | 3bitrd 294 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → ((abs‘(𝐴 / 𝑦)) = 1 ↔ 𝑦 = 𝐴)) |
| 64 | 43, 63 | bitrd 268 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → ((𝐴 / 𝑦) ∈ (Unit‘ℤring)
↔ 𝑦 = 𝐴)) |
| 65 | 40, 64 | orbi12d 746 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → ((𝑦 ∈ (Unit‘ℤring)
∨ (𝐴 / 𝑦) ∈
(Unit‘ℤring)) ↔ (𝑦 = 1 ∨ 𝑦 = 𝐴))) |
| 66 | 29, 65 | mpbid 222 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴)) → (𝑦 = 1 ∨ 𝑦 = 𝐴)) |
| 67 | 66 | expr 643 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) ∧ 𝑦 ∈ ℕ) → (𝑦 ∥ 𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴))) |
| 68 | 67 | ralrimiva 2966 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) → ∀𝑦 ∈ ℕ (𝑦 ∥ 𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴))) |
| 69 | | isprm2 15395 |
. . 3
⊢ (𝐴 ∈ ℙ ↔ (𝐴 ∈
(ℤ≥‘2) ∧ ∀𝑦 ∈ ℕ (𝑦 ∥ 𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))) |
| 70 | 8, 68, 69 | sylanbrc 698 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼) → 𝐴 ∈ ℙ) |
| 71 | | prmz 15389 |
. . . 4
⊢ (𝐴 ∈ ℙ → 𝐴 ∈
ℤ) |
| 72 | | 1nprm 15392 |
. . . . 5
⊢ ¬ 1
∈ ℙ |
| 73 | | zringunit 19836 |
. . . . . 6
⊢ (𝐴 ∈
(Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1)) |
| 74 | | prmnn 15388 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℙ → 𝐴 ∈
ℕ) |
| 75 | | nn0re 11301 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℝ) |
| 76 | 75, 49 | absidd 14161 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ0
→ (abs‘𝐴) =
𝐴) |
| 77 | 74, 48, 76 | 3syl 18 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℙ →
(abs‘𝐴) = 𝐴) |
| 78 | | id 22 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℙ → 𝐴 ∈
ℙ) |
| 79 | 77, 78 | eqeltrd 2701 |
. . . . . . . 8
⊢ (𝐴 ∈ ℙ →
(abs‘𝐴) ∈
ℙ) |
| 80 | | eleq1 2689 |
. . . . . . . 8
⊢
((abs‘𝐴) = 1
→ ((abs‘𝐴)
∈ ℙ ↔ 1 ∈ ℙ)) |
| 81 | 79, 80 | syl5ibcom 235 |
. . . . . . 7
⊢ (𝐴 ∈ ℙ →
((abs‘𝐴) = 1 → 1
∈ ℙ)) |
| 82 | 81 | adantld 483 |
. . . . . 6
⊢ (𝐴 ∈ ℙ → ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) → 1
∈ ℙ)) |
| 83 | 73, 82 | syl5bi 232 |
. . . . 5
⊢ (𝐴 ∈ ℙ → (𝐴 ∈
(Unit‘ℤring) → 1 ∈ ℙ)) |
| 84 | 72, 83 | mtoi 190 |
. . . 4
⊢ (𝐴 ∈ ℙ → ¬
𝐴 ∈
(Unit‘ℤring)) |
| 85 | | simplrl 800 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ∈ ℤ) |
| 86 | 85 | zcnd 11483 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ∈ ℂ) |
| 87 | 74 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝐴 ∈ ℕ) |
| 88 | 87 | nnne0d 11065 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝐴 ≠ 0) |
| 89 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 · 𝑦) = 𝐴) |
| 90 | | simplrr 801 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑦 ∈ ℤ) |
| 91 | 90 | zcnd 11483 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑦 ∈ ℂ) |
| 92 | 91 | mul02d 10234 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (0 · 𝑦) = 0) |
| 93 | 88, 89, 92 | 3netr4d 2871 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 · 𝑦) ≠ (0 · 𝑦)) |
| 94 | | oveq1 6657 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → (𝑥 · 𝑦) = (0 · 𝑦)) |
| 95 | 94 | necon3i 2826 |
. . . . . . . . . . . 12
⊢ ((𝑥 · 𝑦) ≠ (0 · 𝑦) → 𝑥 ≠ 0) |
| 96 | 93, 95 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ≠ 0) |
| 97 | 86, 96 | absne0d 14186 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ≠ 0) |
| 98 | 97 | neneqd 2799 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ¬ (abs‘𝑥) = 0) |
| 99 | | nn0abscl 14052 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℤ →
(abs‘𝑥) ∈
ℕ0) |
| 100 | 85, 99 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈
ℕ0) |
| 101 | | elnn0 11294 |
. . . . . . . . . . 11
⊢
((abs‘𝑥)
∈ ℕ0 ↔ ((abs‘𝑥) ∈ ℕ ∨ (abs‘𝑥) = 0)) |
| 102 | 100, 101 | sylib 208 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) ∈ ℕ ∨ (abs‘𝑥) = 0)) |
| 103 | 102 | ord 392 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (¬ (abs‘𝑥) ∈ ℕ →
(abs‘𝑥) =
0)) |
| 104 | 98, 103 | mt3d 140 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℕ) |
| 105 | 69 | simprbi 480 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℙ →
∀𝑦 ∈ ℕ
(𝑦 ∥ 𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴))) |
| 106 | 105 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ∀𝑦 ∈ ℕ (𝑦 ∥ 𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴))) |
| 107 | | dvdsmul1 15003 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∥ (𝑥 · 𝑦)) |
| 108 | 107 | ad2antlr 763 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ∥ (𝑥 · 𝑦)) |
| 109 | 108, 89 | breqtrd 4679 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ∥ 𝐴) |
| 110 | 71 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝐴 ∈ ℤ) |
| 111 | | absdvdsb 15000 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑥 ∥ 𝐴 ↔ (abs‘𝑥) ∥ 𝐴)) |
| 112 | 85, 110, 111 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 ∥ 𝐴 ↔ (abs‘𝑥) ∥ 𝐴)) |
| 113 | 109, 112 | mpbid 222 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∥ 𝐴) |
| 114 | | breq1 4656 |
. . . . . . . . . 10
⊢ (𝑦 = (abs‘𝑥) → (𝑦 ∥ 𝐴 ↔ (abs‘𝑥) ∥ 𝐴)) |
| 115 | | eqeq1 2626 |
. . . . . . . . . . 11
⊢ (𝑦 = (abs‘𝑥) → (𝑦 = 1 ↔ (abs‘𝑥) = 1)) |
| 116 | | eqeq1 2626 |
. . . . . . . . . . 11
⊢ (𝑦 = (abs‘𝑥) → (𝑦 = 𝐴 ↔ (abs‘𝑥) = 𝐴)) |
| 117 | 115, 116 | orbi12d 746 |
. . . . . . . . . 10
⊢ (𝑦 = (abs‘𝑥) → ((𝑦 = 1 ∨ 𝑦 = 𝐴) ↔ ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴))) |
| 118 | 114, 117 | imbi12d 334 |
. . . . . . . . 9
⊢ (𝑦 = (abs‘𝑥) → ((𝑦 ∥ 𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)) ↔ ((abs‘𝑥) ∥ 𝐴 → ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴)))) |
| 119 | 118 | rspcv 3305 |
. . . . . . . 8
⊢
((abs‘𝑥)
∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 ∥ 𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)) → ((abs‘𝑥) ∥ 𝐴 → ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴)))) |
| 120 | 104, 106,
113, 119 | syl3c 66 |
. . . . . . 7
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴)) |
| 121 | | zringunit 19836 |
. . . . . . . . . 10
⊢ (𝑥 ∈
(Unit‘ℤring) ↔ (𝑥 ∈ ℤ ∧ (abs‘𝑥) = 1)) |
| 122 | 121 | baib 944 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℤ → (𝑥 ∈
(Unit‘ℤring) ↔ (abs‘𝑥) = 1)) |
| 123 | 85, 122 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 ∈ (Unit‘ℤring)
↔ (abs‘𝑥) =
1)) |
| 124 | 90, 31 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑦 ∈ (Unit‘ℤring)
↔ (abs‘𝑦) =
1)) |
| 125 | 91 | abscld 14175 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑦) ∈ ℝ) |
| 126 | 125 | recnd 10068 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑦) ∈ ℂ) |
| 127 | | 1cnd 10056 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 1 ∈ ℂ) |
| 128 | 86 | abscld 14175 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℝ) |
| 129 | 128 | recnd 10068 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℂ) |
| 130 | 126, 127,
129, 97 | mulcand 10660 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (((abs‘𝑥) · (abs‘𝑦)) = ((abs‘𝑥) · 1) ↔ (abs‘𝑦) = 1)) |
| 131 | 89 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘(𝑥 · 𝑦)) = (abs‘𝐴)) |
| 132 | 86, 91 | absmuld 14193 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦))) |
| 133 | 77 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝐴) = 𝐴) |
| 134 | 131, 132,
133 | 3eqtr3d 2664 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) · (abs‘𝑦)) = 𝐴) |
| 135 | 129 | mulid1d 10057 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) · 1) = (abs‘𝑥)) |
| 136 | 134, 135 | eqeq12d 2637 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (((abs‘𝑥) · (abs‘𝑦)) = ((abs‘𝑥) · 1) ↔ 𝐴 = (abs‘𝑥))) |
| 137 | | eqcom 2629 |
. . . . . . . . . 10
⊢ (𝐴 = (abs‘𝑥) ↔ (abs‘𝑥) = 𝐴) |
| 138 | 136, 137 | syl6bb 276 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (((abs‘𝑥) · (abs‘𝑦)) = ((abs‘𝑥) · 1) ↔ (abs‘𝑥) = 𝐴)) |
| 139 | 124, 130,
138 | 3bitr2d 296 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑦 ∈ (Unit‘ℤring)
↔ (abs‘𝑥) =
𝐴)) |
| 140 | 123, 139 | orbi12d 746 |
. . . . . . 7
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((𝑥 ∈ (Unit‘ℤring)
∨ 𝑦 ∈
(Unit‘ℤring)) ↔ ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴))) |
| 141 | 120, 140 | mpbird 247 |
. . . . . 6
⊢ (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 ∈ (Unit‘ℤring)
∨ 𝑦 ∈
(Unit‘ℤring))) |
| 142 | 141 | ex 450 |
. . . . 5
⊢ ((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) = 𝐴 → (𝑥 ∈ (Unit‘ℤring)
∨ 𝑦 ∈
(Unit‘ℤring)))) |
| 143 | 142 | ralrimivva 2971 |
. . . 4
⊢ (𝐴 ∈ ℙ →
∀𝑥 ∈ ℤ
∀𝑦 ∈ ℤ
((𝑥 · 𝑦) = 𝐴 → (𝑥 ∈ (Unit‘ℤring)
∨ 𝑦 ∈
(Unit‘ℤring)))) |
| 144 | 25, 26, 2, 27 | isirred2 18701 |
. . . 4
⊢ (𝐴 ∈ 𝐼 ↔ (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈
(Unit‘ℤring) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 𝐴 → (𝑥 ∈ (Unit‘ℤring)
∨ 𝑦 ∈
(Unit‘ℤring))))) |
| 145 | 71, 84, 143, 144 | syl3anbrc 1246 |
. . 3
⊢ (𝐴 ∈ ℙ → 𝐴 ∈ 𝐼) |
| 146 | 145 | adantl 482 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ∈ ℙ) → 𝐴 ∈ 𝐼) |
| 147 | 70, 146 | impbida 877 |
1
⊢ (𝐴 ∈ ℕ → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ)) |