MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmirredlem Structured version   Visualization version   GIF version

Theorem prmirredlem 19841
Description: A positive integer is irreducible over iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Hypothesis
Ref Expression
prmirred.i 𝐼 = (Irred‘ℤring)
Assertion
Ref Expression
prmirredlem (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ))

Proof of Theorem prmirredlem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringring 19821 . . . . . 6 ring ∈ Ring
2 prmirred.i . . . . . . 7 𝐼 = (Irred‘ℤring)
3 zring1 19829 . . . . . . 7 1 = (1r‘ℤring)
42, 3irredn1 18706 . . . . . 6 ((ℤring ∈ Ring ∧ 𝐴𝐼) → 𝐴 ≠ 1)
51, 4mpan 706 . . . . 5 (𝐴𝐼𝐴 ≠ 1)
65anim2i 593 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → (𝐴 ∈ ℕ ∧ 𝐴 ≠ 1))
7 eluz2b3 11762 . . . 4 (𝐴 ∈ (ℤ‘2) ↔ (𝐴 ∈ ℕ ∧ 𝐴 ≠ 1))
86, 7sylibr 224 . . 3 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → 𝐴 ∈ (ℤ‘2))
9 nnz 11399 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
109ad2antrl 764 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℤ)
11 simprr 796 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝐴)
12 nnne0 11053 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
1312ad2antrl 764 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ≠ 0)
14 nnz 11399 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
1514ad2antrr 762 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴 ∈ ℤ)
16 dvdsval2 14986 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝑦𝐴 ↔ (𝐴 / 𝑦) ∈ ℤ))
1710, 13, 15, 16syl3anc 1326 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦𝐴 ↔ (𝐴 / 𝑦) ∈ ℤ))
1811, 17mpbid 222 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝐴 / 𝑦) ∈ ℤ)
1915zcnd 11483 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴 ∈ ℂ)
20 nncn 11028 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2120ad2antrl 764 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℂ)
2219, 21, 13divcan2d 10803 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 · (𝐴 / 𝑦)) = 𝐴)
23 simplr 792 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴𝐼)
2422, 23eqeltrd 2701 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 · (𝐴 / 𝑦)) ∈ 𝐼)
25 zringbas 19824 . . . . . . . 8 ℤ = (Base‘ℤring)
26 eqid 2622 . . . . . . . 8 (Unit‘ℤring) = (Unit‘ℤring)
27 zringmulr 19827 . . . . . . . 8 · = (.r‘ℤring)
282, 25, 26, 27irredmul 18709 . . . . . . 7 ((𝑦 ∈ ℤ ∧ (𝐴 / 𝑦) ∈ ℤ ∧ (𝑦 · (𝐴 / 𝑦)) ∈ 𝐼) → (𝑦 ∈ (Unit‘ℤring) ∨ (𝐴 / 𝑦) ∈ (Unit‘ℤring)))
2910, 18, 24, 28syl3anc 1326 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ (Unit‘ℤring) ∨ (𝐴 / 𝑦) ∈ (Unit‘ℤring)))
30 zringunit 19836 . . . . . . . . . 10 (𝑦 ∈ (Unit‘ℤring) ↔ (𝑦 ∈ ℤ ∧ (abs‘𝑦) = 1))
3130baib 944 . . . . . . . . 9 (𝑦 ∈ ℤ → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑦) = 1))
3210, 31syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑦) = 1))
33 nnnn0 11299 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
34 nn0re 11301 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
35 nn0ge0 11318 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → 0 ≤ 𝑦)
3634, 35absidd 14161 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (abs‘𝑦) = 𝑦)
3733, 36syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ → (abs‘𝑦) = 𝑦)
3837ad2antrl 764 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (abs‘𝑦) = 𝑦)
3938eqeq1d 2624 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑦) = 1 ↔ 𝑦 = 1))
4032, 39bitrd 268 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ (Unit‘ℤring) ↔ 𝑦 = 1))
41 zringunit 19836 . . . . . . . . . 10 ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ ((𝐴 / 𝑦) ∈ ℤ ∧ (abs‘(𝐴 / 𝑦)) = 1))
4241baib 944 . . . . . . . . 9 ((𝐴 / 𝑦) ∈ ℤ → ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ (abs‘(𝐴 / 𝑦)) = 1))
4318, 42syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ (abs‘(𝐴 / 𝑦)) = 1))
44 nnre 11027 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
4544ad2antrr 762 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴 ∈ ℝ)
46 simprl 794 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℕ)
4745, 46nndivred 11069 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝐴 / 𝑦) ∈ ℝ)
48 nnnn0 11299 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
49 nn0ge0 11318 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
5048, 49syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 0 ≤ 𝐴)
5150ad2antrr 762 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 0 ≤ 𝐴)
5246nnred 11035 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℝ)
53 nngt0 11049 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 0 < 𝑦)
5453ad2antrl 764 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 0 < 𝑦)
55 divge0 10892 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → 0 ≤ (𝐴 / 𝑦))
5645, 51, 52, 54, 55syl22anc 1327 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 0 ≤ (𝐴 / 𝑦))
5747, 56absidd 14161 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (abs‘(𝐴 / 𝑦)) = (𝐴 / 𝑦))
5857eqeq1d 2624 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘(𝐴 / 𝑦)) = 1 ↔ (𝐴 / 𝑦) = 1))
59 1cnd 10056 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 1 ∈ ℂ)
6019, 21, 59, 13divmuld 10823 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝐴 / 𝑦) = 1 ↔ (𝑦 · 1) = 𝐴))
6121mulid1d 10057 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 · 1) = 𝑦)
6261eqeq1d 2624 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝑦 · 1) = 𝐴𝑦 = 𝐴))
6358, 60, 623bitrd 294 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘(𝐴 / 𝑦)) = 1 ↔ 𝑦 = 𝐴))
6443, 63bitrd 268 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ 𝑦 = 𝐴))
6540, 64orbi12d 746 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝑦 ∈ (Unit‘ℤring) ∨ (𝐴 / 𝑦) ∈ (Unit‘ℤring)) ↔ (𝑦 = 1 ∨ 𝑦 = 𝐴)))
6629, 65mpbid 222 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 = 1 ∨ 𝑦 = 𝐴))
6766expr 643 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ 𝑦 ∈ ℕ) → (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
6867ralrimiva 2966 . . 3 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
69 isprm2 15395 . . 3 (𝐴 ∈ ℙ ↔ (𝐴 ∈ (ℤ‘2) ∧ ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴))))
708, 68, 69sylanbrc 698 . 2 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → 𝐴 ∈ ℙ)
71 prmz 15389 . . . 4 (𝐴 ∈ ℙ → 𝐴 ∈ ℤ)
72 1nprm 15392 . . . . 5 ¬ 1 ∈ ℙ
73 zringunit 19836 . . . . . 6 (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))
74 prmnn 15388 . . . . . . . . . 10 (𝐴 ∈ ℙ → 𝐴 ∈ ℕ)
75 nn0re 11301 . . . . . . . . . . 11 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
7675, 49absidd 14161 . . . . . . . . . 10 (𝐴 ∈ ℕ0 → (abs‘𝐴) = 𝐴)
7774, 48, 763syl 18 . . . . . . . . 9 (𝐴 ∈ ℙ → (abs‘𝐴) = 𝐴)
78 id 22 . . . . . . . . 9 (𝐴 ∈ ℙ → 𝐴 ∈ ℙ)
7977, 78eqeltrd 2701 . . . . . . . 8 (𝐴 ∈ ℙ → (abs‘𝐴) ∈ ℙ)
80 eleq1 2689 . . . . . . . 8 ((abs‘𝐴) = 1 → ((abs‘𝐴) ∈ ℙ ↔ 1 ∈ ℙ))
8179, 80syl5ibcom 235 . . . . . . 7 (𝐴 ∈ ℙ → ((abs‘𝐴) = 1 → 1 ∈ ℙ))
8281adantld 483 . . . . . 6 (𝐴 ∈ ℙ → ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 1 ∈ ℙ))
8373, 82syl5bi 232 . . . . 5 (𝐴 ∈ ℙ → (𝐴 ∈ (Unit‘ℤring) → 1 ∈ ℙ))
8472, 83mtoi 190 . . . 4 (𝐴 ∈ ℙ → ¬ 𝐴 ∈ (Unit‘ℤring))
85 simplrl 800 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ∈ ℤ)
8685zcnd 11483 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ∈ ℂ)
8774ad2antrr 762 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝐴 ∈ ℕ)
8887nnne0d 11065 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝐴 ≠ 0)
89 simpr 477 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 · 𝑦) = 𝐴)
90 simplrr 801 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑦 ∈ ℤ)
9190zcnd 11483 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑦 ∈ ℂ)
9291mul02d 10234 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (0 · 𝑦) = 0)
9388, 89, 923netr4d 2871 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 · 𝑦) ≠ (0 · 𝑦))
94 oveq1 6657 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥 · 𝑦) = (0 · 𝑦))
9594necon3i 2826 . . . . . . . . . . . 12 ((𝑥 · 𝑦) ≠ (0 · 𝑦) → 𝑥 ≠ 0)
9693, 95syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ≠ 0)
9786, 96absne0d 14186 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ≠ 0)
9897neneqd 2799 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ¬ (abs‘𝑥) = 0)
99 nn0abscl 14052 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (abs‘𝑥) ∈ ℕ0)
10085, 99syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℕ0)
101 elnn0 11294 . . . . . . . . . . 11 ((abs‘𝑥) ∈ ℕ0 ↔ ((abs‘𝑥) ∈ ℕ ∨ (abs‘𝑥) = 0))
102100, 101sylib 208 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) ∈ ℕ ∨ (abs‘𝑥) = 0))
103102ord 392 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (¬ (abs‘𝑥) ∈ ℕ → (abs‘𝑥) = 0))
10498, 103mt3d 140 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℕ)
10569simprbi 480 . . . . . . . . 9 (𝐴 ∈ ℙ → ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
106105ad2antrr 762 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
107 dvdsmul1 15003 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∥ (𝑥 · 𝑦))
108107ad2antlr 763 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ∥ (𝑥 · 𝑦))
109108, 89breqtrd 4679 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥𝐴)
11071ad2antrr 762 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝐴 ∈ ℤ)
111 absdvdsb 15000 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑥𝐴 ↔ (abs‘𝑥) ∥ 𝐴))
11285, 110, 111syl2anc 693 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥𝐴 ↔ (abs‘𝑥) ∥ 𝐴))
113109, 112mpbid 222 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∥ 𝐴)
114 breq1 4656 . . . . . . . . . 10 (𝑦 = (abs‘𝑥) → (𝑦𝐴 ↔ (abs‘𝑥) ∥ 𝐴))
115 eqeq1 2626 . . . . . . . . . . 11 (𝑦 = (abs‘𝑥) → (𝑦 = 1 ↔ (abs‘𝑥) = 1))
116 eqeq1 2626 . . . . . . . . . . 11 (𝑦 = (abs‘𝑥) → (𝑦 = 𝐴 ↔ (abs‘𝑥) = 𝐴))
117115, 116orbi12d 746 . . . . . . . . . 10 (𝑦 = (abs‘𝑥) → ((𝑦 = 1 ∨ 𝑦 = 𝐴) ↔ ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴)))
118114, 117imbi12d 334 . . . . . . . . 9 (𝑦 = (abs‘𝑥) → ((𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)) ↔ ((abs‘𝑥) ∥ 𝐴 → ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴))))
119118rspcv 3305 . . . . . . . 8 ((abs‘𝑥) ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)) → ((abs‘𝑥) ∥ 𝐴 → ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴))))
120104, 106, 113, 119syl3c 66 . . . . . . 7 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴))
121 zringunit 19836 . . . . . . . . . 10 (𝑥 ∈ (Unit‘ℤring) ↔ (𝑥 ∈ ℤ ∧ (abs‘𝑥) = 1))
122121baib 944 . . . . . . . . 9 (𝑥 ∈ ℤ → (𝑥 ∈ (Unit‘ℤring) ↔ (abs‘𝑥) = 1))
12385, 122syl 17 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 ∈ (Unit‘ℤring) ↔ (abs‘𝑥) = 1))
12490, 31syl 17 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑦) = 1))
12591abscld 14175 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑦) ∈ ℝ)
126125recnd 10068 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑦) ∈ ℂ)
127 1cnd 10056 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 1 ∈ ℂ)
12886abscld 14175 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℝ)
129128recnd 10068 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℂ)
130126, 127, 129, 97mulcand 10660 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (((abs‘𝑥) · (abs‘𝑦)) = ((abs‘𝑥) · 1) ↔ (abs‘𝑦) = 1))
13189fveq2d 6195 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘(𝑥 · 𝑦)) = (abs‘𝐴))
13286, 91absmuld 14193 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
13377ad2antrr 762 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝐴) = 𝐴)
134131, 132, 1333eqtr3d 2664 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) · (abs‘𝑦)) = 𝐴)
135129mulid1d 10057 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) · 1) = (abs‘𝑥))
136134, 135eqeq12d 2637 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (((abs‘𝑥) · (abs‘𝑦)) = ((abs‘𝑥) · 1) ↔ 𝐴 = (abs‘𝑥)))
137 eqcom 2629 . . . . . . . . . 10 (𝐴 = (abs‘𝑥) ↔ (abs‘𝑥) = 𝐴)
138136, 137syl6bb 276 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (((abs‘𝑥) · (abs‘𝑦)) = ((abs‘𝑥) · 1) ↔ (abs‘𝑥) = 𝐴))
139124, 130, 1383bitr2d 296 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑥) = 𝐴))
140123, 139orbi12d 746 . . . . . . 7 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring)) ↔ ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴)))
141120, 140mpbird 247 . . . . . 6 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring)))
142141ex 450 . . . . 5 ((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) = 𝐴 → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring))))
143142ralrimivva 2971 . . . 4 (𝐴 ∈ ℙ → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 𝐴 → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring))))
14425, 26, 2, 27isirred2 18701 . . . 4 (𝐴𝐼 ↔ (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ (Unit‘ℤring) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 𝐴 → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring)))))
14571, 84, 143, 144syl3anbrc 1246 . . 3 (𝐴 ∈ ℙ → 𝐴𝐼)
146145adantl 482 . 2 ((𝐴 ∈ ℕ ∧ 𝐴 ∈ ℙ) → 𝐴𝐼)
14770, 146impbida 877 1 (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941   < clt 10074  cle 10075   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  abscabs 13974  cdvds 14983  cprime 15385  Ringcrg 18547  Unitcui 18639  Irredcir 18640  ringzring 19818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-gz 15634  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-irred 18643  df-invr 18672  df-dvr 18683  df-drng 18749  df-subrg 18778  df-cnfld 19747  df-zring 19819
This theorem is referenced by:  dfprm2  19842  prmirred  19843
  Copyright terms: Public domain W3C validator