![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringmnd | Structured version Visualization version GIF version |
Description: A ring is a monoid under addition. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
ringmnd | ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrp 18552 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
2 | grpmnd 17429 | . 2 ⊢ (𝑅 ∈ Grp → 𝑅 ∈ Mnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1990 Mndcmnd 17294 Grpcgrp 17422 Ringcrg 18547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-grp 17425 df-ring 18549 |
This theorem is referenced by: ringmgm 18557 gsummulc1 18606 gsummulc2 18607 gsummgp0 18608 prdsringd 18612 pwsco1rhm 18738 lmodvsmmulgdi 18898 psrlidm 19403 psrridm 19404 mplsubrglem 19439 mplmonmul 19464 evlslem2 19512 evlslem3 19514 coe1tmmul2 19646 coe1tmmul 19647 cply1mul 19664 gsummoncoe1 19674 evls1gsumadd 19689 cnfldmulg 19778 cnsubmlem 19794 gsumfsum 19813 nn0srg 19816 rge0srg 19817 zring0 19828 re0g 19958 uvcresum 20132 mamudi 20209 mamudir 20210 mamulid 20247 mamurid 20248 mat1dimmul 20282 mat1mhm 20290 dmatmul 20303 scmatscm 20319 1mavmul 20354 mulmarep1gsum1 20379 mdet0pr 20398 m1detdiag 20403 mdetdiag 20405 mdet0 20412 m2detleib 20437 maducoeval2 20446 madugsum 20449 smadiadetlem1a 20469 smadiadetlem3 20474 smadiadet 20476 cpmatmcllem 20523 mat2pmatghm 20535 mat2pmatmul 20536 pmatcollpw3fi1lem1 20591 idpm2idmp 20606 mp2pm2mplem4 20614 pm2mpghm 20621 monmat2matmon 20629 pm2mp 20630 chfacfscmulgsum 20665 chfacfpmmulgsum 20669 cpmadugsumlemF 20681 cayhamlem4 20693 tdeglem4 23820 tdeglem2 23821 mdegmullem 23838 coe1mul3 23859 plypf1 23968 tayl0 24116 jensen 24715 amgmlem 24716 suborng 29815 xrge0slmod 29844 zringnm 30004 rezh 30015 amgm2d 38501 amgm3d 38502 amgm4d 38503 2zrng0 41938 cznrng 41955 mgpsumz 42141 ply1mulgsumlem2 42175 amgmwlem 42548 amgmw2d 42550 |
Copyright terms: Public domain | W3C validator |