MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadaddlem Structured version   Visualization version   GIF version

Theorem sadaddlem 15188
Description: Lemma for sadadd 15189. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadaddlem.c 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (bits‘𝐴), 𝑚 ∈ (bits‘𝐵), ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadaddlem.k 𝐾 = (bits ↾ ℕ0)
sadaddlem.1 (𝜑𝐴 ∈ ℤ)
sadaddlem.2 (𝜑𝐵 ∈ ℤ)
sadaddlem.3 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sadaddlem (𝜑 → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) = (bits‘((𝐴 + 𝐵) mod (2↑𝑁))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadaddlem
StepHypRef Expression
1 sadaddlem.k . . . . . . . . . . . . 13 𝐾 = (bits ↾ ℕ0)
21fveq1i 6192 . . . . . . . . . . . 12 (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((bits‘𝐴) ∩ (0..^𝑁)))
3 sadaddlem.1 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℤ)
4 2nn 11185 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ
54a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℕ)
6 sadaddlem.3 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
75, 6nnexpcld 13030 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑𝑁) ∈ ℕ)
83, 7zmodcld 12691 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 mod (2↑𝑁)) ∈ ℕ0)
9 fvres 6207 . . . . . . . . . . . . . . 15 ((𝐴 mod (2↑𝑁)) ∈ ℕ0 → ((bits ↾ ℕ0)‘(𝐴 mod (2↑𝑁))) = (bits‘(𝐴 mod (2↑𝑁))))
108, 9syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 mod (2↑𝑁))) = (bits‘(𝐴 mod (2↑𝑁))))
11 bitsmod 15158 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)))
123, 6, 11syl2anc 693 . . . . . . . . . . . . . 14 (𝜑 → (bits‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)))
1310, 12eqtrd 2656 . . . . . . . . . . . . 13 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)))
14 bitsf1o 15167 . . . . . . . . . . . . . 14 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
15 f1ocnvfv 6534 . . . . . . . . . . . . . 14 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (𝐴 mod (2↑𝑁)) ∈ ℕ0) → (((bits ↾ ℕ0)‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)) → ((bits ↾ ℕ0)‘((bits‘𝐴) ∩ (0..^𝑁))) = (𝐴 mod (2↑𝑁))))
1614, 8, 15sylancr 695 . . . . . . . . . . . . 13 (𝜑 → (((bits ↾ ℕ0)‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)) → ((bits ↾ ℕ0)‘((bits‘𝐴) ∩ (0..^𝑁))) = (𝐴 mod (2↑𝑁))))
1713, 16mpd 15 . . . . . . . . . . . 12 (𝜑 → ((bits ↾ ℕ0)‘((bits‘𝐴) ∩ (0..^𝑁))) = (𝐴 mod (2↑𝑁)))
182, 17syl5eq 2668 . . . . . . . . . . 11 (𝜑 → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) = (𝐴 mod (2↑𝑁)))
1918oveq2d 6666 . . . . . . . . . 10 (𝜑 → (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) = (𝐴 − (𝐴 mod (2↑𝑁))))
2019oveq1d 6665 . . . . . . . . 9 (𝜑 → ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) / (2↑𝑁)) = ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)))
213zred 11482 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
227nnrpd 11870 . . . . . . . . . 10 (𝜑 → (2↑𝑁) ∈ ℝ+)
23 moddifz 12682 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) ∈ ℤ)
2421, 22, 23syl2anc 693 . . . . . . . . 9 (𝜑 → ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) ∈ ℤ)
2520, 24eqeltrd 2701 . . . . . . . 8 (𝜑 → ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ)
267nnzd 11481 . . . . . . . . 9 (𝜑 → (2↑𝑁) ∈ ℤ)
277nnne0d 11065 . . . . . . . . 9 (𝜑 → (2↑𝑁) ≠ 0)
28 inss1 3833 . . . . . . . . . . . . . 14 ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ (bits‘𝐴)
29 bitsss 15148 . . . . . . . . . . . . . 14 (bits‘𝐴) ⊆ ℕ0
3028, 29sstri 3612 . . . . . . . . . . . . 13 ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ ℕ0
31 fzofi 12773 . . . . . . . . . . . . . 14 (0..^𝑁) ∈ Fin
32 inss2 3834 . . . . . . . . . . . . . 14 ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
33 ssfi 8180 . . . . . . . . . . . . . 14 (((0..^𝑁) ∈ Fin ∧ ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((bits‘𝐴) ∩ (0..^𝑁)) ∈ Fin)
3431, 32, 33mp2an 708 . . . . . . . . . . . . 13 ((bits‘𝐴) ∩ (0..^𝑁)) ∈ Fin
35 elfpw 8268 . . . . . . . . . . . . 13 (((bits‘𝐴) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((bits‘𝐴) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((bits‘𝐴) ∩ (0..^𝑁)) ∈ Fin))
3630, 34, 35mpbir2an 955 . . . . . . . . . . . 12 ((bits‘𝐴) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)
37 f1ocnv 6149 . . . . . . . . . . . . . . 15 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
38 f1of 6137 . . . . . . . . . . . . . . 15 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
3914, 37, 38mp2b 10 . . . . . . . . . . . . . 14 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0
401feq1i 6036 . . . . . . . . . . . . . 14 (𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
4139, 40mpbir 221 . . . . . . . . . . . . 13 𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0
4241ffvelrni 6358 . . . . . . . . . . . 12 (((bits‘𝐴) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) ∈ ℕ0)
4336, 42mp1i 13 . . . . . . . . . . 11 (𝜑 → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) ∈ ℕ0)
4443nn0zd 11480 . . . . . . . . . 10 (𝜑 → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) ∈ ℤ)
453, 44zsubcld 11487 . . . . . . . . 9 (𝜑 → (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ∈ ℤ)
46 dvdsval2 14986 . . . . . . . . 9 (((2↑𝑁) ∈ ℤ ∧ (2↑𝑁) ≠ 0 ∧ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ∈ ℤ) → ((2↑𝑁) ∥ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ↔ ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ))
4726, 27, 45, 46syl3anc 1326 . . . . . . . 8 (𝜑 → ((2↑𝑁) ∥ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ↔ ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ))
4825, 47mpbird 247 . . . . . . 7 (𝜑 → (2↑𝑁) ∥ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))))
491fveq1i 6192 . . . . . . . . . . . 12 (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((bits‘𝐵) ∩ (0..^𝑁)))
50 sadaddlem.2 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℤ)
5150, 7zmodcld 12691 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 mod (2↑𝑁)) ∈ ℕ0)
52 fvres 6207 . . . . . . . . . . . . . . 15 ((𝐵 mod (2↑𝑁)) ∈ ℕ0 → ((bits ↾ ℕ0)‘(𝐵 mod (2↑𝑁))) = (bits‘(𝐵 mod (2↑𝑁))))
5351, 52syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 mod (2↑𝑁))) = (bits‘(𝐵 mod (2↑𝑁))))
54 bitsmod 15158 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)))
5550, 6, 54syl2anc 693 . . . . . . . . . . . . . 14 (𝜑 → (bits‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)))
5653, 55eqtrd 2656 . . . . . . . . . . . . 13 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)))
57 f1ocnvfv 6534 . . . . . . . . . . . . . 14 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (𝐵 mod (2↑𝑁)) ∈ ℕ0) → (((bits ↾ ℕ0)‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)) → ((bits ↾ ℕ0)‘((bits‘𝐵) ∩ (0..^𝑁))) = (𝐵 mod (2↑𝑁))))
5814, 51, 57sylancr 695 . . . . . . . . . . . . 13 (𝜑 → (((bits ↾ ℕ0)‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)) → ((bits ↾ ℕ0)‘((bits‘𝐵) ∩ (0..^𝑁))) = (𝐵 mod (2↑𝑁))))
5956, 58mpd 15 . . . . . . . . . . . 12 (𝜑 → ((bits ↾ ℕ0)‘((bits‘𝐵) ∩ (0..^𝑁))) = (𝐵 mod (2↑𝑁)))
6049, 59syl5eq 2668 . . . . . . . . . . 11 (𝜑 → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) = (𝐵 mod (2↑𝑁)))
6160oveq2d 6666 . . . . . . . . . 10 (𝜑 → (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) = (𝐵 − (𝐵 mod (2↑𝑁))))
6261oveq1d 6665 . . . . . . . . 9 (𝜑 → ((𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) / (2↑𝑁)) = ((𝐵 − (𝐵 mod (2↑𝑁))) / (2↑𝑁)))
6350zred 11482 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
64 moddifz 12682 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → ((𝐵 − (𝐵 mod (2↑𝑁))) / (2↑𝑁)) ∈ ℤ)
6563, 22, 64syl2anc 693 . . . . . . . . 9 (𝜑 → ((𝐵 − (𝐵 mod (2↑𝑁))) / (2↑𝑁)) ∈ ℤ)
6662, 65eqeltrd 2701 . . . . . . . 8 (𝜑 → ((𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ)
67 inss1 3833 . . . . . . . . . . . . . 14 ((bits‘𝐵) ∩ (0..^𝑁)) ⊆ (bits‘𝐵)
68 bitsss 15148 . . . . . . . . . . . . . 14 (bits‘𝐵) ⊆ ℕ0
6967, 68sstri 3612 . . . . . . . . . . . . 13 ((bits‘𝐵) ∩ (0..^𝑁)) ⊆ ℕ0
70 inss2 3834 . . . . . . . . . . . . . 14 ((bits‘𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
71 ssfi 8180 . . . . . . . . . . . . . 14 (((0..^𝑁) ∈ Fin ∧ ((bits‘𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((bits‘𝐵) ∩ (0..^𝑁)) ∈ Fin)
7231, 70, 71mp2an 708 . . . . . . . . . . . . 13 ((bits‘𝐵) ∩ (0..^𝑁)) ∈ Fin
73 elfpw 8268 . . . . . . . . . . . . 13 (((bits‘𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((bits‘𝐵) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((bits‘𝐵) ∩ (0..^𝑁)) ∈ Fin))
7469, 72, 73mpbir2an 955 . . . . . . . . . . . 12 ((bits‘𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)
7541ffvelrni 6358 . . . . . . . . . . . 12 (((bits‘𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
7674, 75mp1i 13 . . . . . . . . . . 11 (𝜑 → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
7776nn0zd 11480 . . . . . . . . . 10 (𝜑 → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) ∈ ℤ)
7850, 77zsubcld 11487 . . . . . . . . 9 (𝜑 → (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ∈ ℤ)
79 dvdsval2 14986 . . . . . . . . 9 (((2↑𝑁) ∈ ℤ ∧ (2↑𝑁) ≠ 0 ∧ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ∈ ℤ) → ((2↑𝑁) ∥ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ↔ ((𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ))
8026, 27, 78, 79syl3anc 1326 . . . . . . . 8 (𝜑 → ((2↑𝑁) ∥ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ↔ ((𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ))
8166, 80mpbird 247 . . . . . . 7 (𝜑 → (2↑𝑁) ∥ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))))
82 dvds2add 15015 . . . . . . . 8 (((2↑𝑁) ∈ ℤ ∧ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ∈ ℤ ∧ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ∈ ℤ) → (((2↑𝑁) ∥ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ∧ (2↑𝑁) ∥ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))) → (2↑𝑁) ∥ ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) + (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))))))
8326, 45, 78, 82syl3anc 1326 . . . . . . 7 (𝜑 → (((2↑𝑁) ∥ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ∧ (2↑𝑁) ∥ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))) → (2↑𝑁) ∥ ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) + (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))))))
8448, 81, 83mp2and 715 . . . . . 6 (𝜑 → (2↑𝑁) ∥ ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) + (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))))
853zcnd 11483 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
8650zcnd 11483 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
8743nn0cnd 11353 . . . . . . 7 (𝜑 → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) ∈ ℂ)
8876nn0cnd 11353 . . . . . . 7 (𝜑 → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) ∈ ℂ)
8985, 86, 87, 88addsub4d 10439 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) − ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))) = ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) + (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))))
9084, 89breqtrrd 4681 . . . . 5 (𝜑 → (2↑𝑁) ∥ ((𝐴 + 𝐵) − ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))))
913, 50zaddcld 11486 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ ℤ)
9244, 77zaddcld 11486 . . . . . 6 (𝜑 → ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ∈ ℤ)
93 moddvds 14991 . . . . . 6 (((2↑𝑁) ∈ ℕ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ∈ ℤ) → (((𝐴 + 𝐵) mod (2↑𝑁)) = (((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) mod (2↑𝑁)) ↔ (2↑𝑁) ∥ ((𝐴 + 𝐵) − ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))))))
947, 91, 92, 93syl3anc 1326 . . . . 5 (𝜑 → (((𝐴 + 𝐵) mod (2↑𝑁)) = (((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) mod (2↑𝑁)) ↔ (2↑𝑁) ∥ ((𝐴 + 𝐵) − ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))))))
9590, 94mpbird 247 . . . 4 (𝜑 → ((𝐴 + 𝐵) mod (2↑𝑁)) = (((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) mod (2↑𝑁)))
9629a1i 11 . . . . 5 (𝜑 → (bits‘𝐴) ⊆ ℕ0)
9768a1i 11 . . . . 5 (𝜑 → (bits‘𝐵) ⊆ ℕ0)
98 sadaddlem.c . . . . 5 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (bits‘𝐴), 𝑚 ∈ (bits‘𝐵), ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
9996, 97, 98, 6, 1sadadd3 15183 . . . 4 (𝜑 → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) mod (2↑𝑁)))
100 inss1 3833 . . . . . . . . 9 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ ((bits‘𝐴) sadd (bits‘𝐵))
101 sadcl 15184 . . . . . . . . . 10 (((bits‘𝐴) ⊆ ℕ0 ∧ (bits‘𝐵) ⊆ ℕ0) → ((bits‘𝐴) sadd (bits‘𝐵)) ⊆ ℕ0)
10229, 68, 101mp2an 708 . . . . . . . . 9 ((bits‘𝐴) sadd (bits‘𝐵)) ⊆ ℕ0
103100, 102sstri 3612 . . . . . . . 8 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ ℕ0
104 inss2 3834 . . . . . . . . 9 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
105 ssfi 8180 . . . . . . . . 9 (((0..^𝑁) ∈ Fin ∧ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ Fin)
10631, 104, 105mp2an 708 . . . . . . . 8 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ Fin
107 elfpw 8268 . . . . . . . 8 ((((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ Fin))
108103, 106, 107mpbir2an 955 . . . . . . 7 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)
10941ffvelrni 6358 . . . . . . 7 ((((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℕ0)
110108, 109mp1i 13 . . . . . 6 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℕ0)
111110nn0red 11352 . . . . 5 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℝ)
112110nn0ge0d 11354 . . . . 5 (𝜑 → 0 ≤ (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
1131fveq1i 6192 . . . . . . . . . 10 (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))
114113fveq2i 6194 . . . . . . . . 9 ((bits ↾ ℕ0)‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
115 fvres 6207 . . . . . . . . . 10 ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℕ0 → ((bits ↾ ℕ0)‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))))
116110, 115syl 17 . . . . . . . . 9 (𝜑 → ((bits ↾ ℕ0)‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))))
117108a1i 11 . . . . . . . . . 10 (𝜑 → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
118 f1ocnvfv2 6533 . . . . . . . . . 10 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))
11914, 117, 118sylancr 695 . . . . . . . . 9 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))
120114, 116, 1193eqtr3a 2680 . . . . . . . 8 (𝜑 → (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))
121120, 104syl6eqss 3655 . . . . . . 7 (𝜑 → (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
122110nn0zd 11480 . . . . . . . 8 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℤ)
123 bitsfzo 15157 . . . . . . . 8 (((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
124122, 6, 123syl2anc 693 . . . . . . 7 (𝜑 → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
125121, 124mpbird 247 . . . . . 6 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
126 elfzolt2 12479 . . . . . 6 ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) < (2↑𝑁))
127125, 126syl 17 . . . . 5 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) < (2↑𝑁))
128 modid 12695 . . . . 5 ((((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∧ (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) < (2↑𝑁))) → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) mod (2↑𝑁)) = (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
129111, 22, 112, 127, 128syl22anc 1327 . . . 4 (𝜑 → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) mod (2↑𝑁)) = (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
13095, 99, 1293eqtr2d 2662 . . 3 (𝜑 → ((𝐴 + 𝐵) mod (2↑𝑁)) = (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
131130fveq2d 6195 . 2 (𝜑 → (bits‘((𝐴 + 𝐵) mod (2↑𝑁))) = (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))))
132131, 120eqtr2d 2657 1 (𝜑 → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) = (bits‘((𝐴 + 𝐵) mod (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  caddwcad 1545  wcel 1990  wne 2794  cin 3573  wss 3574  c0 3915  ifcif 4086  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  ccnv 5113  cres 5116  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  1𝑜c1o 7553  2𝑜c2o 7554  Fincfn 7955  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cz 11377  +crp 11832  ..^cfzo 12465   mod cmo 12668  seqcseq 12801  cexp 12860  cdvds 14983  bitscbits 15141   sadd csad 15142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-fal 1489  df-had 1533  df-cad 1546  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-bits 15144  df-sad 15173
This theorem is referenced by:  sadadd  15189
  Copyright terms: Public domain W3C validator