MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadaddlem Structured version   Visualization version   Unicode version

Theorem sadaddlem 15188
Description: Lemma for sadadd 15189. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadaddlem.c  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  (bits `  A ) ,  m  e.  (bits `  B ) ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
sadaddlem.k  |-  K  =  `' (bits  |`  NN0 )
sadaddlem.1  |-  ( ph  ->  A  e.  ZZ )
sadaddlem.2  |-  ( ph  ->  B  e.  ZZ )
sadaddlem.3  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
sadaddlem  |-  ( ph  ->  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) )  =  (bits `  (
( A  +  B
)  mod  ( 2 ^ N ) ) ) )
Distinct variable groups:    m, c, n    A, c, m    B, c, m    n, N
Allowed substitution hints:    ph( m, n, c)    A( n)    B( n)    C( m, n, c)    K( m, n, c)    N( m, c)

Proof of Theorem sadaddlem
StepHypRef Expression
1 sadaddlem.k . . . . . . . . . . . . 13  |-  K  =  `' (bits  |`  NN0 )
21fveq1i 6192 . . . . . . . . . . . 12  |-  ( K `
 ( (bits `  A )  i^i  (
0..^ N ) ) )  =  ( `' (bits  |`  NN0 ) `  ( (bits `  A )  i^i  ( 0..^ N ) ) )
3 sadaddlem.1 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  ZZ )
4 2nn 11185 . . . . . . . . . . . . . . . . . 18  |-  2  e.  NN
54a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  2  e.  NN )
6 sadaddlem.3 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  NN0 )
75, 6nnexpcld 13030 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2 ^ N
)  e.  NN )
83, 7zmodcld 12691 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  mod  (
2 ^ N ) )  e.  NN0 )
9 fvres 6207 . . . . . . . . . . . . . . 15  |-  ( ( A  mod  ( 2 ^ N ) )  e.  NN0  ->  ( (bits  |`  NN0 ) `  ( A  mod  ( 2 ^ N ) ) )  =  (bits `  ( A  mod  ( 2 ^ N ) ) ) )
108, 9syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( (bits  |`  NN0 ) `  ( A  mod  (
2 ^ N ) ) )  =  (bits `  ( A  mod  (
2 ^ N ) ) ) )
11 bitsmod 15158 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
(bits `  ( A  mod  ( 2 ^ N
) ) )  =  ( (bits `  A
)  i^i  ( 0..^ N ) ) )
123, 6, 11syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  ->  (bits `  ( A  mod  ( 2 ^ N
) ) )  =  ( (bits `  A
)  i^i  ( 0..^ N ) ) )
1310, 12eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ph  ->  ( (bits  |`  NN0 ) `  ( A  mod  (
2 ^ N ) ) )  =  ( (bits `  A )  i^i  ( 0..^ N ) ) )
14 bitsf1o 15167 . . . . . . . . . . . . . 14  |-  (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )
15 f1ocnvfv 6534 . . . . . . . . . . . . . 14  |-  ( ( (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )  /\  ( A  mod  ( 2 ^ N
) )  e.  NN0 )  ->  ( ( (bits  |`  NN0 ) `  ( A  mod  ( 2 ^ N ) ) )  =  ( (bits `  A )  i^i  (
0..^ N ) )  ->  ( `' (bits  |`  NN0 ) `  (
(bits `  A )  i^i  ( 0..^ N ) ) )  =  ( A  mod  ( 2 ^ N ) ) ) )
1614, 8, 15sylancr 695 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( (bits  |`  NN0 ) `  ( A  mod  (
2 ^ N ) ) )  =  ( (bits `  A )  i^i  ( 0..^ N ) )  ->  ( `' (bits  |`  NN0 ) `  ( (bits `  A )  i^i  ( 0..^ N ) ) )  =  ( A  mod  ( 2 ^ N ) ) ) )
1713, 16mpd 15 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( (bits `  A
)  i^i  ( 0..^ N ) ) )  =  ( A  mod  ( 2 ^ N
) ) )
182, 17syl5eq 2668 . . . . . . . . . . 11  |-  ( ph  ->  ( K `  (
(bits `  A )  i^i  ( 0..^ N ) ) )  =  ( A  mod  ( 2 ^ N ) ) )
1918oveq2d 6666 . . . . . . . . . 10  |-  ( ph  ->  ( A  -  ( K `  ( (bits `  A )  i^i  (
0..^ N ) ) ) )  =  ( A  -  ( A  mod  ( 2 ^ N ) ) ) )
2019oveq1d 6665 . . . . . . . . 9  |-  ( ph  ->  ( ( A  -  ( K `  ( (bits `  A )  i^i  (
0..^ N ) ) ) )  /  (
2 ^ N ) )  =  ( ( A  -  ( A  mod  ( 2 ^ N ) ) )  /  ( 2 ^ N ) ) )
213zred 11482 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
227nnrpd 11870 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ N
)  e.  RR+ )
23 moddifz 12682 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( 2 ^ N
)  e.  RR+ )  ->  ( ( A  -  ( A  mod  ( 2 ^ N ) ) )  /  ( 2 ^ N ) )  e.  ZZ )
2421, 22, 23syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( ( A  -  ( A  mod  ( 2 ^ N ) ) )  /  ( 2 ^ N ) )  e.  ZZ )
2520, 24eqeltrd 2701 . . . . . . . 8  |-  ( ph  ->  ( ( A  -  ( K `  ( (bits `  A )  i^i  (
0..^ N ) ) ) )  /  (
2 ^ N ) )  e.  ZZ )
267nnzd 11481 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ N
)  e.  ZZ )
277nnne0d 11065 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ N
)  =/=  0 )
28 inss1 3833 . . . . . . . . . . . . . 14  |-  ( (bits `  A )  i^i  (
0..^ N ) ) 
C_  (bits `  A
)
29 bitsss 15148 . . . . . . . . . . . . . 14  |-  (bits `  A )  C_  NN0
3028, 29sstri 3612 . . . . . . . . . . . . 13  |-  ( (bits `  A )  i^i  (
0..^ N ) ) 
C_  NN0
31 fzofi 12773 . . . . . . . . . . . . . 14  |-  ( 0..^ N )  e.  Fin
32 inss2 3834 . . . . . . . . . . . . . 14  |-  ( (bits `  A )  i^i  (
0..^ N ) ) 
C_  ( 0..^ N )
33 ssfi 8180 . . . . . . . . . . . . . 14  |-  ( ( ( 0..^ N )  e.  Fin  /\  (
(bits `  A )  i^i  ( 0..^ N ) )  C_  ( 0..^ N ) )  -> 
( (bits `  A
)  i^i  ( 0..^ N ) )  e. 
Fin )
3431, 32, 33mp2an 708 . . . . . . . . . . . . 13  |-  ( (bits `  A )  i^i  (
0..^ N ) )  e.  Fin
35 elfpw 8268 . . . . . . . . . . . . 13  |-  ( ( (bits `  A )  i^i  ( 0..^ N ) )  e.  ( ~P
NN0  i^i  Fin )  <->  ( ( (bits `  A
)  i^i  ( 0..^ N ) )  C_  NN0 
/\  ( (bits `  A )  i^i  (
0..^ N ) )  e.  Fin ) )
3630, 34, 35mpbir2an 955 . . . . . . . . . . . 12  |-  ( (bits `  A )  i^i  (
0..^ N ) )  e.  ( ~P NN0  i^i 
Fin )
37 f1ocnv 6149 . . . . . . . . . . . . . . 15  |-  ( (bits  |`  NN0 ) : NN0 -1-1-onto-> ( ~P NN0  i^i  Fin )  ->  `' (bits  |`  NN0 ) : ( ~P NN0  i^i 
Fin ) -1-1-onto-> NN0 )
38 f1of 6137 . . . . . . . . . . . . . . 15  |-  ( `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin ) -1-1-onto-> NN0  ->  `' (bits  |` 
NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0 )
3914, 37, 38mp2b 10 . . . . . . . . . . . . . 14  |-  `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0
401feq1i 6036 . . . . . . . . . . . . . 14  |-  ( K : ( ~P NN0  i^i 
Fin ) --> NN0  <->  `' (bits  |` 
NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0 )
4139, 40mpbir 221 . . . . . . . . . . . . 13  |-  K :
( ~P NN0  i^i  Fin ) --> NN0
4241ffvelrni 6358 . . . . . . . . . . . 12  |-  ( ( (bits `  A )  i^i  ( 0..^ N ) )  e.  ( ~P
NN0  i^i  Fin )  ->  ( K `  (
(bits `  A )  i^i  ( 0..^ N ) ) )  e.  NN0 )
4336, 42mp1i 13 . . . . . . . . . . 11  |-  ( ph  ->  ( K `  (
(bits `  A )  i^i  ( 0..^ N ) ) )  e.  NN0 )
4443nn0zd 11480 . . . . . . . . . 10  |-  ( ph  ->  ( K `  (
(bits `  A )  i^i  ( 0..^ N ) ) )  e.  ZZ )
453, 44zsubcld 11487 . . . . . . . . 9  |-  ( ph  ->  ( A  -  ( K `  ( (bits `  A )  i^i  (
0..^ N ) ) ) )  e.  ZZ )
46 dvdsval2 14986 . . . . . . . . 9  |-  ( ( ( 2 ^ N
)  e.  ZZ  /\  ( 2 ^ N
)  =/=  0  /\  ( A  -  ( K `  ( (bits `  A )  i^i  (
0..^ N ) ) ) )  e.  ZZ )  ->  ( ( 2 ^ N )  ||  ( A  -  ( K `  ( (bits `  A )  i^i  (
0..^ N ) ) ) )  <->  ( ( A  -  ( K `  ( (bits `  A
)  i^i  ( 0..^ N ) ) ) )  /  ( 2 ^ N ) )  e.  ZZ ) )
4726, 27, 45, 46syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( ( 2 ^ N )  ||  ( A  -  ( K `  ( (bits `  A
)  i^i  ( 0..^ N ) ) ) )  <->  ( ( A  -  ( K `  ( (bits `  A )  i^i  ( 0..^ N ) ) ) )  / 
( 2 ^ N
) )  e.  ZZ ) )
4825, 47mpbird 247 . . . . . . 7  |-  ( ph  ->  ( 2 ^ N
)  ||  ( A  -  ( K `  ( (bits `  A )  i^i  ( 0..^ N ) ) ) ) )
491fveq1i 6192 . . . . . . . . . . . 12  |-  ( K `
 ( (bits `  B )  i^i  (
0..^ N ) ) )  =  ( `' (bits  |`  NN0 ) `  ( (bits `  B )  i^i  ( 0..^ N ) ) )
50 sadaddlem.2 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  e.  ZZ )
5150, 7zmodcld 12691 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  mod  (
2 ^ N ) )  e.  NN0 )
52 fvres 6207 . . . . . . . . . . . . . . 15  |-  ( ( B  mod  ( 2 ^ N ) )  e.  NN0  ->  ( (bits  |`  NN0 ) `  ( B  mod  ( 2 ^ N ) ) )  =  (bits `  ( B  mod  ( 2 ^ N ) ) ) )
5351, 52syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( (bits  |`  NN0 ) `  ( B  mod  (
2 ^ N ) ) )  =  (bits `  ( B  mod  (
2 ^ N ) ) ) )
54 bitsmod 15158 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  ZZ  /\  N  e.  NN0 )  -> 
(bits `  ( B  mod  ( 2 ^ N
) ) )  =  ( (bits `  B
)  i^i  ( 0..^ N ) ) )
5550, 6, 54syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  ->  (bits `  ( B  mod  ( 2 ^ N
) ) )  =  ( (bits `  B
)  i^i  ( 0..^ N ) ) )
5653, 55eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ph  ->  ( (bits  |`  NN0 ) `  ( B  mod  (
2 ^ N ) ) )  =  ( (bits `  B )  i^i  ( 0..^ N ) ) )
57 f1ocnvfv 6534 . . . . . . . . . . . . . 14  |-  ( ( (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )  /\  ( B  mod  ( 2 ^ N
) )  e.  NN0 )  ->  ( ( (bits  |`  NN0 ) `  ( B  mod  ( 2 ^ N ) ) )  =  ( (bits `  B )  i^i  (
0..^ N ) )  ->  ( `' (bits  |`  NN0 ) `  (
(bits `  B )  i^i  ( 0..^ N ) ) )  =  ( B  mod  ( 2 ^ N ) ) ) )
5814, 51, 57sylancr 695 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( (bits  |`  NN0 ) `  ( B  mod  (
2 ^ N ) ) )  =  ( (bits `  B )  i^i  ( 0..^ N ) )  ->  ( `' (bits  |`  NN0 ) `  ( (bits `  B )  i^i  ( 0..^ N ) ) )  =  ( B  mod  ( 2 ^ N ) ) ) )
5956, 58mpd 15 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( (bits `  B
)  i^i  ( 0..^ N ) ) )  =  ( B  mod  ( 2 ^ N
) ) )
6049, 59syl5eq 2668 . . . . . . . . . . 11  |-  ( ph  ->  ( K `  (
(bits `  B )  i^i  ( 0..^ N ) ) )  =  ( B  mod  ( 2 ^ N ) ) )
6160oveq2d 6666 . . . . . . . . . 10  |-  ( ph  ->  ( B  -  ( K `  ( (bits `  B )  i^i  (
0..^ N ) ) ) )  =  ( B  -  ( B  mod  ( 2 ^ N ) ) ) )
6261oveq1d 6665 . . . . . . . . 9  |-  ( ph  ->  ( ( B  -  ( K `  ( (bits `  B )  i^i  (
0..^ N ) ) ) )  /  (
2 ^ N ) )  =  ( ( B  -  ( B  mod  ( 2 ^ N ) ) )  /  ( 2 ^ N ) ) )
6350zred 11482 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR )
64 moddifz 12682 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  ( 2 ^ N
)  e.  RR+ )  ->  ( ( B  -  ( B  mod  ( 2 ^ N ) ) )  /  ( 2 ^ N ) )  e.  ZZ )
6563, 22, 64syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( ( B  -  ( B  mod  ( 2 ^ N ) ) )  /  ( 2 ^ N ) )  e.  ZZ )
6662, 65eqeltrd 2701 . . . . . . . 8  |-  ( ph  ->  ( ( B  -  ( K `  ( (bits `  B )  i^i  (
0..^ N ) ) ) )  /  (
2 ^ N ) )  e.  ZZ )
67 inss1 3833 . . . . . . . . . . . . . 14  |-  ( (bits `  B )  i^i  (
0..^ N ) ) 
C_  (bits `  B
)
68 bitsss 15148 . . . . . . . . . . . . . 14  |-  (bits `  B )  C_  NN0
6967, 68sstri 3612 . . . . . . . . . . . . 13  |-  ( (bits `  B )  i^i  (
0..^ N ) ) 
C_  NN0
70 inss2 3834 . . . . . . . . . . . . . 14  |-  ( (bits `  B )  i^i  (
0..^ N ) ) 
C_  ( 0..^ N )
71 ssfi 8180 . . . . . . . . . . . . . 14  |-  ( ( ( 0..^ N )  e.  Fin  /\  (
(bits `  B )  i^i  ( 0..^ N ) )  C_  ( 0..^ N ) )  -> 
( (bits `  B
)  i^i  ( 0..^ N ) )  e. 
Fin )
7231, 70, 71mp2an 708 . . . . . . . . . . . . 13  |-  ( (bits `  B )  i^i  (
0..^ N ) )  e.  Fin
73 elfpw 8268 . . . . . . . . . . . . 13  |-  ( ( (bits `  B )  i^i  ( 0..^ N ) )  e.  ( ~P
NN0  i^i  Fin )  <->  ( ( (bits `  B
)  i^i  ( 0..^ N ) )  C_  NN0 
/\  ( (bits `  B )  i^i  (
0..^ N ) )  e.  Fin ) )
7469, 72, 73mpbir2an 955 . . . . . . . . . . . 12  |-  ( (bits `  B )  i^i  (
0..^ N ) )  e.  ( ~P NN0  i^i 
Fin )
7541ffvelrni 6358 . . . . . . . . . . . 12  |-  ( ( (bits `  B )  i^i  ( 0..^ N ) )  e.  ( ~P
NN0  i^i  Fin )  ->  ( K `  (
(bits `  B )  i^i  ( 0..^ N ) ) )  e.  NN0 )
7674, 75mp1i 13 . . . . . . . . . . 11  |-  ( ph  ->  ( K `  (
(bits `  B )  i^i  ( 0..^ N ) ) )  e.  NN0 )
7776nn0zd 11480 . . . . . . . . . 10  |-  ( ph  ->  ( K `  (
(bits `  B )  i^i  ( 0..^ N ) ) )  e.  ZZ )
7850, 77zsubcld 11487 . . . . . . . . 9  |-  ( ph  ->  ( B  -  ( K `  ( (bits `  B )  i^i  (
0..^ N ) ) ) )  e.  ZZ )
79 dvdsval2 14986 . . . . . . . . 9  |-  ( ( ( 2 ^ N
)  e.  ZZ  /\  ( 2 ^ N
)  =/=  0  /\  ( B  -  ( K `  ( (bits `  B )  i^i  (
0..^ N ) ) ) )  e.  ZZ )  ->  ( ( 2 ^ N )  ||  ( B  -  ( K `  ( (bits `  B )  i^i  (
0..^ N ) ) ) )  <->  ( ( B  -  ( K `  ( (bits `  B
)  i^i  ( 0..^ N ) ) ) )  /  ( 2 ^ N ) )  e.  ZZ ) )
8026, 27, 78, 79syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( ( 2 ^ N )  ||  ( B  -  ( K `  ( (bits `  B
)  i^i  ( 0..^ N ) ) ) )  <->  ( ( B  -  ( K `  ( (bits `  B )  i^i  ( 0..^ N ) ) ) )  / 
( 2 ^ N
) )  e.  ZZ ) )
8166, 80mpbird 247 . . . . . . 7  |-  ( ph  ->  ( 2 ^ N
)  ||  ( B  -  ( K `  ( (bits `  B )  i^i  ( 0..^ N ) ) ) ) )
82 dvds2add 15015 . . . . . . . 8  |-  ( ( ( 2 ^ N
)  e.  ZZ  /\  ( A  -  ( K `  ( (bits `  A )  i^i  (
0..^ N ) ) ) )  e.  ZZ  /\  ( B  -  ( K `  ( (bits `  B )  i^i  (
0..^ N ) ) ) )  e.  ZZ )  ->  ( ( ( 2 ^ N ) 
||  ( A  -  ( K `  ( (bits `  A )  i^i  (
0..^ N ) ) ) )  /\  (
2 ^ N ) 
||  ( B  -  ( K `  ( (bits `  B )  i^i  (
0..^ N ) ) ) ) )  -> 
( 2 ^ N
)  ||  ( ( A  -  ( K `  ( (bits `  A
)  i^i  ( 0..^ N ) ) ) )  +  ( B  -  ( K `  ( (bits `  B )  i^i  ( 0..^ N ) ) ) ) ) ) )
8326, 45, 78, 82syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( ( ( 2 ^ N )  ||  ( A  -  ( K `  ( (bits `  A )  i^i  (
0..^ N ) ) ) )  /\  (
2 ^ N ) 
||  ( B  -  ( K `  ( (bits `  B )  i^i  (
0..^ N ) ) ) ) )  -> 
( 2 ^ N
)  ||  ( ( A  -  ( K `  ( (bits `  A
)  i^i  ( 0..^ N ) ) ) )  +  ( B  -  ( K `  ( (bits `  B )  i^i  ( 0..^ N ) ) ) ) ) ) )
8448, 81, 83mp2and 715 . . . . . 6  |-  ( ph  ->  ( 2 ^ N
)  ||  ( ( A  -  ( K `  ( (bits `  A
)  i^i  ( 0..^ N ) ) ) )  +  ( B  -  ( K `  ( (bits `  B )  i^i  ( 0..^ N ) ) ) ) ) )
853zcnd 11483 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
8650zcnd 11483 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
8743nn0cnd 11353 . . . . . . 7  |-  ( ph  ->  ( K `  (
(bits `  A )  i^i  ( 0..^ N ) ) )  e.  CC )
8876nn0cnd 11353 . . . . . . 7  |-  ( ph  ->  ( K `  (
(bits `  B )  i^i  ( 0..^ N ) ) )  e.  CC )
8985, 86, 87, 88addsub4d 10439 . . . . . 6  |-  ( ph  ->  ( ( A  +  B )  -  (
( K `  (
(bits `  A )  i^i  ( 0..^ N ) ) )  +  ( K `  ( (bits `  B )  i^i  (
0..^ N ) ) ) ) )  =  ( ( A  -  ( K `  ( (bits `  A )  i^i  (
0..^ N ) ) ) )  +  ( B  -  ( K `
 ( (bits `  B )  i^i  (
0..^ N ) ) ) ) ) )
9084, 89breqtrrd 4681 . . . . 5  |-  ( ph  ->  ( 2 ^ N
)  ||  ( ( A  +  B )  -  ( ( K `
 ( (bits `  A )  i^i  (
0..^ N ) ) )  +  ( K `
 ( (bits `  B )  i^i  (
0..^ N ) ) ) ) ) )
913, 50zaddcld 11486 . . . . . 6  |-  ( ph  ->  ( A  +  B
)  e.  ZZ )
9244, 77zaddcld 11486 . . . . . 6  |-  ( ph  ->  ( ( K `  ( (bits `  A )  i^i  ( 0..^ N ) ) )  +  ( K `  ( (bits `  B )  i^i  (
0..^ N ) ) ) )  e.  ZZ )
93 moddvds 14991 . . . . . 6  |-  ( ( ( 2 ^ N
)  e.  NN  /\  ( A  +  B
)  e.  ZZ  /\  ( ( K `  ( (bits `  A )  i^i  ( 0..^ N ) ) )  +  ( K `  ( (bits `  B )  i^i  (
0..^ N ) ) ) )  e.  ZZ )  ->  ( ( ( A  +  B )  mod  ( 2 ^ N ) )  =  ( ( ( K `
 ( (bits `  A )  i^i  (
0..^ N ) ) )  +  ( K `
 ( (bits `  B )  i^i  (
0..^ N ) ) ) )  mod  (
2 ^ N ) )  <->  ( 2 ^ N )  ||  (
( A  +  B
)  -  ( ( K `  ( (bits `  A )  i^i  (
0..^ N ) ) )  +  ( K `
 ( (bits `  B )  i^i  (
0..^ N ) ) ) ) ) ) )
947, 91, 92, 93syl3anc 1326 . . . . 5  |-  ( ph  ->  ( ( ( A  +  B )  mod  ( 2 ^ N
) )  =  ( ( ( K `  ( (bits `  A )  i^i  ( 0..^ N ) ) )  +  ( K `  ( (bits `  B )  i^i  (
0..^ N ) ) ) )  mod  (
2 ^ N ) )  <->  ( 2 ^ N )  ||  (
( A  +  B
)  -  ( ( K `  ( (bits `  A )  i^i  (
0..^ N ) ) )  +  ( K `
 ( (bits `  B )  i^i  (
0..^ N ) ) ) ) ) ) )
9590, 94mpbird 247 . . . 4  |-  ( ph  ->  ( ( A  +  B )  mod  (
2 ^ N ) )  =  ( ( ( K `  (
(bits `  A )  i^i  ( 0..^ N ) ) )  +  ( K `  ( (bits `  B )  i^i  (
0..^ N ) ) ) )  mod  (
2 ^ N ) ) )
9629a1i 11 . . . . 5  |-  ( ph  ->  (bits `  A )  C_ 
NN0 )
9768a1i 11 . . . . 5  |-  ( ph  ->  (bits `  B )  C_ 
NN0 )
98 sadaddlem.c . . . . 5  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  (bits `  A ) ,  m  e.  (bits `  B ) ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
9996, 97, 98, 6, 1sadadd3 15183 . . . 4  |-  ( ph  ->  ( ( K `  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) ) )  mod  ( 2 ^ N ) )  =  ( ( ( K `  ( (bits `  A )  i^i  (
0..^ N ) ) )  +  ( K `
 ( (bits `  B )  i^i  (
0..^ N ) ) ) )  mod  (
2 ^ N ) ) )
100 inss1 3833 . . . . . . . . 9  |-  ( ( (bits `  A ) sadd  (bits `  B ) )  i^i  ( 0..^ N ) )  C_  (
(bits `  A ) sadd  (bits `  B ) )
101 sadcl 15184 . . . . . . . . . 10  |-  ( ( (bits `  A )  C_ 
NN0  /\  (bits `  B
)  C_  NN0 )  -> 
( (bits `  A
) sadd  (bits `  B )
)  C_  NN0 )
10229, 68, 101mp2an 708 . . . . . . . . 9  |-  ( (bits `  A ) sadd  (bits `  B ) )  C_  NN0
103100, 102sstri 3612 . . . . . . . 8  |-  ( ( (bits `  A ) sadd  (bits `  B ) )  i^i  ( 0..^ N ) )  C_  NN0
104 inss2 3834 . . . . . . . . 9  |-  ( ( (bits `  A ) sadd  (bits `  B ) )  i^i  ( 0..^ N ) )  C_  (
0..^ N )
105 ssfi 8180 . . . . . . . . 9  |-  ( ( ( 0..^ N )  e.  Fin  /\  (
( (bits `  A
) sadd  (bits `  B )
)  i^i  ( 0..^ N ) )  C_  ( 0..^ N ) )  ->  ( ( (bits `  A ) sadd  (bits `  B ) )  i^i  ( 0..^ N ) )  e.  Fin )
10631, 104, 105mp2an 708 . . . . . . . 8  |-  ( ( (bits `  A ) sadd  (bits `  B ) )  i^i  ( 0..^ N ) )  e.  Fin
107 elfpw 8268 . . . . . . . 8  |-  ( ( ( (bits `  A
) sadd  (bits `  B )
)  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  <->  ( ( ( (bits `  A ) sadd  (bits `  B ) )  i^i  ( 0..^ N ) )  C_  NN0  /\  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) )  e.  Fin ) )
108103, 106, 107mpbir2an 955 . . . . . . 7  |-  ( ( (bits `  A ) sadd  (bits `  B ) )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )
10941ffvelrni 6358 . . . . . . 7  |-  ( ( ( (bits `  A
) sadd  (bits `  B )
)  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  ->  ( K `  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) ) )  e.  NN0 )
110108, 109mp1i 13 . . . . . 6  |-  ( ph  ->  ( K `  (
( (bits `  A
) sadd  (bits `  B )
)  i^i  ( 0..^ N ) ) )  e.  NN0 )
111110nn0red 11352 . . . . 5  |-  ( ph  ->  ( K `  (
( (bits `  A
) sadd  (bits `  B )
)  i^i  ( 0..^ N ) ) )  e.  RR )
112110nn0ge0d 11354 . . . . 5  |-  ( ph  ->  0  <_  ( K `  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) ) ) )
1131fveq1i 6192 . . . . . . . . . 10  |-  ( K `
 ( ( (bits `  A ) sadd  (bits `  B ) )  i^i  ( 0..^ N ) ) )  =  ( `' (bits  |`  NN0 ) `  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) ) )
114113fveq2i 6194 . . . . . . . . 9  |-  ( (bits  |`  NN0 ) `  ( K `  ( (
(bits `  A ) sadd  (bits `  B ) )  i^i  ( 0..^ N ) ) ) )  =  ( (bits  |`  NN0 ) `  ( `' (bits  |`  NN0 ) `  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) ) ) )
115 fvres 6207 . . . . . . . . . 10  |-  ( ( K `  ( ( (bits `  A ) sadd  (bits `  B ) )  i^i  ( 0..^ N ) ) )  e. 
NN0  ->  ( (bits  |`  NN0 ) `  ( K `  (
( (bits `  A
) sadd  (bits `  B )
)  i^i  ( 0..^ N ) ) ) )  =  (bits `  ( K `  ( ( (bits `  A ) sadd  (bits `  B ) )  i^i  ( 0..^ N ) ) ) ) )
116110, 115syl 17 . . . . . . . . 9  |-  ( ph  ->  ( (bits  |`  NN0 ) `  ( K `  (
( (bits `  A
) sadd  (bits `  B )
)  i^i  ( 0..^ N ) ) ) )  =  (bits `  ( K `  ( ( (bits `  A ) sadd  (bits `  B ) )  i^i  ( 0..^ N ) ) ) ) )
117108a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) )  e.  ( ~P NN0  i^i 
Fin ) )
118 f1ocnvfv2 6533 . . . . . . . . . 10  |-  ( ( (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )  /\  ( ( (bits `  A ) sadd  (bits `  B ) )  i^i  ( 0..^ N ) )  e.  ( ~P
NN0  i^i  Fin )
)  ->  ( (bits  |` 
NN0 ) `  ( `' (bits  |`  NN0 ) `  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) ) ) )  =  ( ( (bits `  A
) sadd  (bits `  B )
)  i^i  ( 0..^ N ) ) )
11914, 117, 118sylancr 695 . . . . . . . . 9  |-  ( ph  ->  ( (bits  |`  NN0 ) `  ( `' (bits  |`  NN0 ) `  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) ) ) )  =  ( ( (bits `  A
) sadd  (bits `  B )
)  i^i  ( 0..^ N ) ) )
120114, 116, 1193eqtr3a 2680 . . . . . . . 8  |-  ( ph  ->  (bits `  ( K `  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) ) ) )  =  ( ( (bits `  A
) sadd  (bits `  B )
)  i^i  ( 0..^ N ) ) )
121120, 104syl6eqss 3655 . . . . . . 7  |-  ( ph  ->  (bits `  ( K `  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) ) ) )  C_  (
0..^ N ) )
122110nn0zd 11480 . . . . . . . 8  |-  ( ph  ->  ( K `  (
( (bits `  A
) sadd  (bits `  B )
)  i^i  ( 0..^ N ) ) )  e.  ZZ )
123 bitsfzo 15157 . . . . . . . 8  |-  ( ( ( K `  (
( (bits `  A
) sadd  (bits `  B )
)  i^i  ( 0..^ N ) ) )  e.  ZZ  /\  N  e.  NN0 )  ->  (
( K `  (
( (bits `  A
) sadd  (bits `  B )
)  i^i  ( 0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N ) )  <->  (bits `  ( K `  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) ) ) )  C_  (
0..^ N ) ) )
124122, 6, 123syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( K `  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N
) )  <->  (bits `  ( K `  ( (
(bits `  A ) sadd  (bits `  B ) )  i^i  ( 0..^ N ) ) ) ) 
C_  ( 0..^ N ) ) )
125121, 124mpbird 247 . . . . . 6  |-  ( ph  ->  ( K `  (
( (bits `  A
) sadd  (bits `  B )
)  i^i  ( 0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N ) ) )
126 elfzolt2 12479 . . . . . 6  |-  ( ( K `  ( ( (bits `  A ) sadd  (bits `  B ) )  i^i  ( 0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N ) )  ->  ( K `  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) ) )  <  ( 2 ^ N ) )
127125, 126syl 17 . . . . 5  |-  ( ph  ->  ( K `  (
( (bits `  A
) sadd  (bits `  B )
)  i^i  ( 0..^ N ) ) )  <  ( 2 ^ N ) )
128 modid 12695 . . . . 5  |-  ( ( ( ( K `  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) ) )  e.  RR  /\  ( 2 ^ N
)  e.  RR+ )  /\  ( 0  <_  ( K `  ( (
(bits `  A ) sadd  (bits `  B ) )  i^i  ( 0..^ N ) ) )  /\  ( K `  ( ( (bits `  A ) sadd  (bits `  B ) )  i^i  ( 0..^ N ) ) )  < 
( 2 ^ N
) ) )  -> 
( ( K `  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) ) )  mod  ( 2 ^ N ) )  =  ( K `  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) ) ) )
129111, 22, 112, 127, 128syl22anc 1327 . . . 4  |-  ( ph  ->  ( ( K `  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) ) )  mod  ( 2 ^ N ) )  =  ( K `  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) ) ) )
13095, 99, 1293eqtr2d 2662 . . 3  |-  ( ph  ->  ( ( A  +  B )  mod  (
2 ^ N ) )  =  ( K `
 ( ( (bits `  A ) sadd  (bits `  B ) )  i^i  ( 0..^ N ) ) ) )
131130fveq2d 6195 . 2  |-  ( ph  ->  (bits `  ( ( A  +  B )  mod  ( 2 ^ N
) ) )  =  (bits `  ( K `  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) ) ) ) )
132131, 120eqtr2d 2657 1  |-  ( ph  ->  ( ( (bits `  A ) sadd  (bits `  B
) )  i^i  (
0..^ N ) )  =  (bits `  (
( A  +  B
)  mod  ( 2 ^ N ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483  caddwcad 1545    e. wcel 1990    =/= wne 2794    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113    |` cres 5116   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   RR+crp 11832  ..^cfzo 12465    mod cmo 12668    seqcseq 12801   ^cexp 12860    || cdvds 14983  bitscbits 15141   sadd csad 15142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-fal 1489  df-had 1533  df-cad 1546  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-bits 15144  df-sad 15173
This theorem is referenced by:  sadadd  15189
  Copyright terms: Public domain W3C validator