MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcoll2 Structured version   Visualization version   Unicode version

Theorem seqcoll2 13249
Description: The function  F contains a sparse set of nonzero values to be summed. The function  G is an order isomorphism from the set of nonzero values of  F to a 1-based finite sequence, and  H collects these nonzero values together. Under these conditions, the sum over the values in  H yields the same result as the sum over the original set  F. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
seqcoll2.1  |-  ( (
ph  /\  k  e.  S )  ->  ( Z  .+  k )  =  k )
seqcoll2.1b  |-  ( (
ph  /\  k  e.  S )  ->  (
k  .+  Z )  =  k )
seqcoll2.c  |-  ( (
ph  /\  ( k  e.  S  /\  n  e.  S ) )  -> 
( k  .+  n
)  e.  S )
seqcoll2.a  |-  ( ph  ->  Z  e.  S )
seqcoll2.2  |-  ( ph  ->  G  Isom  <  ,  <  ( ( 1 ... ( # `
 A ) ) ,  A ) )
seqcoll2.3  |-  ( ph  ->  A  =/=  (/) )
seqcoll2.5  |-  ( ph  ->  A  C_  ( M ... N ) )
seqcoll2.6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  S
)
seqcoll2.7  |-  ( (
ph  /\  k  e.  ( ( M ... N )  \  A
) )  ->  ( F `  k )  =  Z )
seqcoll2.8  |-  ( (
ph  /\  n  e.  ( 1 ... ( # `
 A ) ) )  ->  ( H `  n )  =  ( F `  ( G `
 n ) ) )
Assertion
Ref Expression
seqcoll2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq 1 ( 
.+  ,  H ) `
 ( # `  A
) ) )
Distinct variable groups:    k, n, A    k, F, n    k, G, n    n, H    k, M, n    ph, k, n   
k, N    .+ , k, n    S, k, n    k, Z
Allowed substitution hints:    H( k)    N( n)    Z( n)

Proof of Theorem seqcoll2
StepHypRef Expression
1 seqcoll2.1b . . 3  |-  ( (
ph  /\  k  e.  S )  ->  (
k  .+  Z )  =  k )
2 fzssuz 12382 . . . 4  |-  ( M ... N )  C_  ( ZZ>= `  M )
3 seqcoll2.5 . . . . 5  |-  ( ph  ->  A  C_  ( M ... N ) )
4 seqcoll2.2 . . . . . . . 8  |-  ( ph  ->  G  Isom  <  ,  <  ( ( 1 ... ( # `
 A ) ) ,  A ) )
5 isof1o 6573 . . . . . . . 8  |-  ( G 
Isom  <  ,  <  (
( 1 ... ( # `
 A ) ) ,  A )  ->  G : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
64, 5syl 17 . . . . . . 7  |-  ( ph  ->  G : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
7 f1of 6137 . . . . . . 7  |-  ( G : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  G :
( 1 ... ( # `
 A ) ) --> A )
86, 7syl 17 . . . . . 6  |-  ( ph  ->  G : ( 1 ... ( # `  A
) ) --> A )
9 seqcoll2.3 . . . . . . . . . 10  |-  ( ph  ->  A  =/=  (/) )
10 fzfi 12771 . . . . . . . . . . . . 13  |-  ( M ... N )  e. 
Fin
11 ssfi 8180 . . . . . . . . . . . . 13  |-  ( ( ( M ... N
)  e.  Fin  /\  A  C_  ( M ... N ) )  ->  A  e.  Fin )
1210, 3, 11sylancr 695 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  Fin )
13 hasheq0 13154 . . . . . . . . . . . 12  |-  ( A  e.  Fin  ->  (
( # `  A )  =  0  <->  A  =  (/) ) )
1412, 13syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( # `  A
)  =  0  <->  A  =  (/) ) )
1514necon3bbid 2831 . . . . . . . . . 10  |-  ( ph  ->  ( -.  ( # `  A )  =  0  <-> 
A  =/=  (/) ) )
169, 15mpbird 247 . . . . . . . . 9  |-  ( ph  ->  -.  ( # `  A
)  =  0 )
17 hashcl 13147 . . . . . . . . . . . 12  |-  ( A  e.  Fin  ->  ( # `
 A )  e. 
NN0 )
1812, 17syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  A
)  e.  NN0 )
19 elnn0 11294 . . . . . . . . . . 11  |-  ( (
# `  A )  e.  NN0  <->  ( ( # `  A )  e.  NN  \/  ( # `  A
)  =  0 ) )
2018, 19sylib 208 . . . . . . . . . 10  |-  ( ph  ->  ( ( # `  A
)  e.  NN  \/  ( # `  A )  =  0 ) )
2120ord 392 . . . . . . . . 9  |-  ( ph  ->  ( -.  ( # `  A )  e.  NN  ->  ( # `  A
)  =  0 ) )
2216, 21mt3d 140 . . . . . . . 8  |-  ( ph  ->  ( # `  A
)  e.  NN )
23 nnuz 11723 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
2422, 23syl6eleq 2711 . . . . . . 7  |-  ( ph  ->  ( # `  A
)  e.  ( ZZ>= ` 
1 ) )
25 eluzfz2 12349 . . . . . . 7  |-  ( (
# `  A )  e.  ( ZZ>= `  1 )  ->  ( # `  A
)  e.  ( 1 ... ( # `  A
) ) )
2624, 25syl 17 . . . . . 6  |-  ( ph  ->  ( # `  A
)  e.  ( 1 ... ( # `  A
) ) )
278, 26ffvelrnd 6360 . . . . 5  |-  ( ph  ->  ( G `  ( # `
 A ) )  e.  A )
283, 27sseldd 3604 . . . 4  |-  ( ph  ->  ( G `  ( # `
 A ) )  e.  ( M ... N ) )
292, 28sseldi 3601 . . 3  |-  ( ph  ->  ( G `  ( # `
 A ) )  e.  ( ZZ>= `  M
) )
30 elfzuz3 12339 . . . 4  |-  ( ( G `  ( # `  A ) )  e.  ( M ... N
)  ->  N  e.  ( ZZ>= `  ( G `  ( # `  A
) ) ) )
3128, 30syl 17 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  ( G `  ( # `  A ) ) ) )
32 fzss2 12381 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  ( G `  ( # `  A
) ) )  -> 
( M ... ( G `  ( # `  A
) ) )  C_  ( M ... N ) )
3331, 32syl 17 . . . . . 6  |-  ( ph  ->  ( M ... ( G `  ( # `  A
) ) )  C_  ( M ... N ) )
3433sselda 3603 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... ( G `
 ( # `  A
) ) ) )  ->  k  e.  ( M ... N ) )
35 seqcoll2.6 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  S
)
3634, 35syldan 487 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... ( G `
 ( # `  A
) ) ) )  ->  ( F `  k )  e.  S
)
37 seqcoll2.c . . . 4  |-  ( (
ph  /\  ( k  e.  S  /\  n  e.  S ) )  -> 
( k  .+  n
)  e.  S )
3829, 36, 37seqcl 12821 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( G `  ( # `  A ) ) )  e.  S
)
39 peano2uz 11741 . . . . . . . 8  |-  ( ( G `  ( # `  A ) )  e.  ( ZZ>= `  M )  ->  ( ( G `  ( # `  A ) )  +  1 )  e.  ( ZZ>= `  M
) )
4029, 39syl 17 . . . . . . 7  |-  ( ph  ->  ( ( G `  ( # `  A ) )  +  1 )  e.  ( ZZ>= `  M
) )
41 fzss1 12380 . . . . . . 7  |-  ( ( ( G `  ( # `
 A ) )  +  1 )  e.  ( ZZ>= `  M )  ->  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) 
C_  ( M ... N ) )
4240, 41syl 17 . . . . . 6  |-  ( ph  ->  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) 
C_  ( M ... N ) )
4342sselda 3603 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  k  e.  ( M ... N ) )
44 eluzelre 11698 . . . . . . . . 9  |-  ( ( G `  ( # `  A ) )  e.  ( ZZ>= `  M )  ->  ( G `  ( # `
 A ) )  e.  RR )
4529, 44syl 17 . . . . . . . 8  |-  ( ph  ->  ( G `  ( # `
 A ) )  e.  RR )
4645adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  ( G `  ( # `  A
) )  e.  RR )
47 peano2re 10209 . . . . . . . 8  |-  ( ( G `  ( # `  A ) )  e.  RR  ->  ( ( G `  ( # `  A
) )  +  1 )  e.  RR )
4846, 47syl 17 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  ( ( G `  ( # `  A
) )  +  1 )  e.  RR )
49 elfzelz 12342 . . . . . . . . 9  |-  ( k  e.  ( ( ( G `  ( # `  A ) )  +  1 ) ... N
)  ->  k  e.  ZZ )
5049zred 11482 . . . . . . . 8  |-  ( k  e.  ( ( ( G `  ( # `  A ) )  +  1 ) ... N
)  ->  k  e.  RR )
5150adantl 482 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  k  e.  RR )
5246ltp1d 10954 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  ( G `  ( # `  A
) )  <  (
( G `  ( # `
 A ) )  +  1 ) )
53 elfzle1 12344 . . . . . . . 8  |-  ( k  e.  ( ( ( G `  ( # `  A ) )  +  1 ) ... N
)  ->  ( ( G `  ( # `  A
) )  +  1 )  <_  k )
5453adantl 482 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  ( ( G `  ( # `  A
) )  +  1 )  <_  k )
5546, 48, 51, 52, 54ltletrd 10197 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  ( G `  ( # `  A
) )  <  k
)
566adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  G : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
57 f1ocnv 6149 . . . . . . . . . . . . 13  |-  ( G : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  `' G : A -1-1-onto-> ( 1 ... ( # `
 A ) ) )
5856, 57syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  `' G : A -1-1-onto-> ( 1 ... ( # `
 A ) ) )
59 f1of 6137 . . . . . . . . . . . 12  |-  ( `' G : A -1-1-onto-> ( 1 ... ( # `  A
) )  ->  `' G : A --> ( 1 ... ( # `  A
) ) )
6058, 59syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  `' G : A --> ( 1 ... ( # `  A
) ) )
61 simprr 796 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  k  e.  A )
6260, 61ffvelrnd 6360 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  ( `' G `  k )  e.  ( 1 ... ( # `  A
) ) )
63 elfzle2 12345 . . . . . . . . . 10  |-  ( ( `' G `  k )  e.  ( 1 ... ( # `  A
) )  ->  ( `' G `  k )  <_  ( # `  A
) )
6462, 63syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  ( `' G `  k )  <_  ( # `  A
) )
65 elfzelz 12342 . . . . . . . . . . . 12  |-  ( ( `' G `  k )  e.  ( 1 ... ( # `  A
) )  ->  ( `' G `  k )  e.  ZZ )
6662, 65syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  ( `' G `  k )  e.  ZZ )
6766zred 11482 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  ( `' G `  k )  e.  RR )
6818adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  ( # `
 A )  e. 
NN0 )
6968nn0red 11352 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  ( # `
 A )  e.  RR )
7067, 69lenltd 10183 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  (
( `' G `  k )  <_  ( # `
 A )  <->  -.  ( # `
 A )  < 
( `' G `  k ) ) )
7164, 70mpbid 222 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  -.  ( # `  A )  <  ( `' G `  k ) )
724adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  G  Isom  <  ,  <  (
( 1 ... ( # `
 A ) ) ,  A ) )
7326adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  ( # `
 A )  e.  ( 1 ... ( # `
 A ) ) )
74 isorel 6576 . . . . . . . . . 10  |-  ( ( G  Isom  <  ,  <  ( ( 1 ... ( # `
 A ) ) ,  A )  /\  ( ( # `  A
)  e.  ( 1 ... ( # `  A
) )  /\  ( `' G `  k )  e.  ( 1 ... ( # `  A
) ) ) )  ->  ( ( # `  A )  <  ( `' G `  k )  <-> 
( G `  ( # `
 A ) )  <  ( G `  ( `' G `  k ) ) ) )
7572, 73, 62, 74syl12anc 1324 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  (
( # `  A )  <  ( `' G `  k )  <->  ( G `  ( # `  A
) )  <  ( G `  ( `' G `  k )
) ) )
76 f1ocnvfv2 6533 . . . . . . . . . . 11  |-  ( ( G : ( 1 ... ( # `  A
) ) -1-1-onto-> A  /\  k  e.  A )  ->  ( G `  ( `' G `  k )
)  =  k )
7756, 61, 76syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  ( G `  ( `' G `  k )
)  =  k )
7877breq2d 4665 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  (
( G `  ( # `
 A ) )  <  ( G `  ( `' G `  k ) )  <->  ( G `  ( # `  A ) )  <  k ) )
7975, 78bitrd 268 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  (
( # `  A )  <  ( `' G `  k )  <->  ( G `  ( # `  A
) )  <  k
) )
8071, 79mtbid 314 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  -.  ( G `  ( # `  A ) )  < 
k )
8180expr 643 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  ( k  e.  A  ->  -.  ( G `  ( # `  A
) )  <  k
) )
8255, 81mt2d 131 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  -.  k  e.  A )
8343, 82eldifd 3585 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  k  e.  ( ( M ... N )  \  A
) )
84 seqcoll2.7 . . . 4  |-  ( (
ph  /\  k  e.  ( ( M ... N )  \  A
) )  ->  ( F `  k )  =  Z )
8583, 84syldan 487 . . 3  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  ( F `  k )  =  Z )
861, 29, 31, 38, 85seqid2 12847 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( G `  ( # `  A ) ) )  =  (  seq M (  .+  ,  F ) `  N
) )
87 seqcoll2.1 . . 3  |-  ( (
ph  /\  k  e.  S )  ->  ( Z  .+  k )  =  k )
88 seqcoll2.a . . 3  |-  ( ph  ->  Z  e.  S )
893, 2syl6ss 3615 . . 3  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
9033ssdifd 3746 . . . . 5  |-  ( ph  ->  ( ( M ... ( G `  ( # `  A ) ) ) 
\  A )  C_  ( ( M ... N )  \  A
) )
9190sselda 3603 . . . 4  |-  ( (
ph  /\  k  e.  ( ( M ... ( G `  ( # `  A ) ) ) 
\  A ) )  ->  k  e.  ( ( M ... N
)  \  A )
)
9291, 84syldan 487 . . 3  |-  ( (
ph  /\  k  e.  ( ( M ... ( G `  ( # `  A ) ) ) 
\  A ) )  ->  ( F `  k )  =  Z )
93 seqcoll2.8 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... ( # `
 A ) ) )  ->  ( H `  n )  =  ( F `  ( G `
 n ) ) )
9487, 1, 37, 88, 4, 26, 89, 36, 92, 93seqcoll 13248 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( G `  ( # `  A ) ) )  =  (  seq 1 (  .+  ,  H ) `  ( # `
 A ) ) )
9586, 94eqtr3d 2658 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq 1 ( 
.+  ,  H ) `
 ( # `  A
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571    C_ wss 3574   (/)c0 3915   class class class wbr 4653   `'ccnv 5113   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-hash 13118
This theorem is referenced by:  isercolllem3  14397  gsumval3  18308
  Copyright terms: Public domain W3C validator