MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unbenlem Structured version   Visualization version   Unicode version

Theorem unbenlem 15612
Description: Lemma for unben 15613. (Contributed by NM, 5-May-2005.) (Revised by Mario Carneiro, 15-Sep-2013.)
Hypothesis
Ref Expression
unbenlem.1  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om )
Assertion
Ref Expression
unbenlem  |-  ( ( A  C_  NN  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A  ~~  om )
Distinct variable groups:    m, n, A    m, G, n
Allowed substitution hints:    A( x)    G( x)

Proof of Theorem unbenlem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nnex 11026 . . . . 5  |-  NN  e.  _V
21ssex 4802 . . . 4  |-  ( A 
C_  NN  ->  A  e. 
_V )
3 1z 11407 . . . . . . . 8  |-  1  e.  ZZ
4 unbenlem.1 . . . . . . . 8  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om )
53, 4om2uzf1oi 12752 . . . . . . 7  |-  G : om
-1-1-onto-> ( ZZ>= `  1 )
6 nnuz 11723 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
7 f1oeq3 6129 . . . . . . . 8  |-  ( NN  =  ( ZZ>= `  1
)  ->  ( G : om -1-1-onto-> NN  <->  G : om -1-1-onto-> ( ZZ>= `  1 )
) )
86, 7ax-mp 5 . . . . . . 7  |-  ( G : om -1-1-onto-> NN  <->  G : om -1-1-onto-> ( ZZ>= `  1 )
)
95, 8mpbir 221 . . . . . 6  |-  G : om
-1-1-onto-> NN
10 f1ocnv 6149 . . . . . 6  |-  ( G : om -1-1-onto-> NN  ->  `' G : NN -1-1-onto-> om )
11 f1of1 6136 . . . . . 6  |-  ( `' G : NN -1-1-onto-> om  ->  `' G : NN -1-1-> om )
129, 10, 11mp2b 10 . . . . 5  |-  `' G : NN -1-1-> om
13 f1ores 6151 . . . . 5  |-  ( ( `' G : NN -1-1-> om  /\  A  C_  NN )  ->  ( `' G  |`  A ) : A -1-1-onto-> ( `' G " A ) )
1412, 13mpan 706 . . . 4  |-  ( A 
C_  NN  ->  ( `' G  |`  A ) : A -1-1-onto-> ( `' G " A ) )
15 f1oeng 7974 . . . 4  |-  ( ( A  e.  _V  /\  ( `' G  |`  A ) : A -1-1-onto-> ( `' G " A ) )  ->  A  ~~  ( `' G " A ) )
162, 14, 15syl2anc 693 . . 3  |-  ( A 
C_  NN  ->  A  ~~  ( `' G " A ) )
1716adantr 481 . 2  |-  ( ( A  C_  NN  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A  ~~  ( `' G " A ) )
18 imassrn 5477 . . . 4  |-  ( `' G " A ) 
C_  ran  `' G
19 dfdm4 5316 . . . . 5  |-  dom  G  =  ran  `' G
20 f1of 6137 . . . . . . 7  |-  ( G : om -1-1-onto-> NN  ->  G : om
--> NN )
219, 20ax-mp 5 . . . . . 6  |-  G : om
--> NN
2221fdmi 6052 . . . . 5  |-  dom  G  =  om
2319, 22eqtr3i 2646 . . . 4  |-  ran  `' G  =  om
2418, 23sseqtri 3637 . . 3  |-  ( `' G " A ) 
C_  om
253, 4om2uzuzi 12748 . . . . . . . . . . 11  |-  ( y  e.  om  ->  ( G `  y )  e.  ( ZZ>= `  1 )
)
2625, 6syl6eleqr 2712 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( G `  y )  e.  NN )
27 breq1 4656 . . . . . . . . . . . 12  |-  ( m  =  ( G `  y )  ->  (
m  <  n  <->  ( G `  y )  <  n
) )
2827rexbidv 3052 . . . . . . . . . . 11  |-  ( m  =  ( G `  y )  ->  ( E. n  e.  A  m  <  n  <->  E. n  e.  A  ( G `  y )  <  n
) )
2928rspcv 3305 . . . . . . . . . 10  |-  ( ( G `  y )  e.  NN  ->  ( A. m  e.  NN  E. n  e.  A  m  <  n  ->  E. n  e.  A  ( G `  y )  <  n
) )
3026, 29syl 17 . . . . . . . . 9  |-  ( y  e.  om  ->  ( A. m  e.  NN  E. n  e.  A  m  <  n  ->  E. n  e.  A  ( G `  y )  <  n
) )
3130adantr 481 . . . . . . . 8  |-  ( ( y  e.  om  /\  A  C_  NN )  -> 
( A. m  e.  NN  E. n  e.  A  m  <  n  ->  E. n  e.  A  ( G `  y )  <  n ) )
32 f1ocnv 6149 . . . . . . . . . . . . . . . . 17  |-  ( ( `' G  |`  A ) : A -1-1-onto-> ( `' G " A )  ->  `' ( `' G  |`  A ) : ( `' G " A ) -1-1-onto-> A )
3314, 32syl 17 . . . . . . . . . . . . . . . 16  |-  ( A 
C_  NN  ->  `' ( `' G  |`  A ) : ( `' G " A ) -1-1-onto-> A )
34 f1ofun 6139 . . . . . . . . . . . . . . . . . 18  |-  ( G : om -1-1-onto-> NN  ->  Fun  G )
359, 34ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  Fun  G
36 funcnvres2 5969 . . . . . . . . . . . . . . . . 17  |-  ( Fun 
G  ->  `' ( `' G  |`  A )  =  ( G  |`  ( `' G " A ) ) )
37 f1oeq1 6127 . . . . . . . . . . . . . . . . 17  |-  ( `' ( `' G  |`  A )  =  ( G  |`  ( `' G " A ) )  ->  ( `' ( `' G  |`  A ) : ( `' G " A ) -1-1-onto-> A  <->  ( G  |`  ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A ) )
3835, 36, 37mp2b 10 . . . . . . . . . . . . . . . 16  |-  ( `' ( `' G  |`  A ) : ( `' G " A ) -1-1-onto-> A  <-> 
( G  |`  ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A )
3933, 38sylib 208 . . . . . . . . . . . . . . 15  |-  ( A 
C_  NN  ->  ( G  |`  ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A )
40 f1ofo 6144 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  |`  ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A  ->  ( G  |`  ( `' G " A ) ) : ( `' G " A ) -onto-> A )
41 forn 6118 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  |`  ( `' G " A ) ) : ( `' G " A ) -onto-> A  ->  ran  ( G  |`  ( `' G " A ) )  =  A )
4240, 41syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( G  |`  ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A  ->  ran  ( G  |`  ( `' G " A ) )  =  A )
4342eleq2d 2687 . . . . . . . . . . . . . . . 16  |-  ( ( G  |`  ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A  ->  ( n  e.  ran  ( G  |`  ( `' G " A ) )  <->  n  e.  A
) )
44 f1ofn 6138 . . . . . . . . . . . . . . . . 17  |-  ( ( G  |`  ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A  ->  ( G  |`  ( `' G " A ) )  Fn  ( `' G " A ) )
45 fvelrnb 6243 . . . . . . . . . . . . . . . . 17  |-  ( ( G  |`  ( `' G " A ) )  Fn  ( `' G " A )  ->  (
n  e.  ran  ( G  |`  ( `' G " A ) )  <->  E. m  e.  ( `' G " A ) ( ( G  |`  ( `' G " A ) ) `
 m )  =  n ) )
4644, 45syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( G  |`  ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A  ->  ( n  e.  ran  ( G  |`  ( `' G " A ) )  <->  E. m  e.  ( `' G " A ) ( ( G  |`  ( `' G " A ) ) `  m )  =  n ) )
4743, 46bitr3d 270 . . . . . . . . . . . . . . 15  |-  ( ( G  |`  ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A  ->  ( n  e.  A  <->  E. m  e.  ( `' G " A ) ( ( G  |`  ( `' G " A ) ) `  m )  =  n ) )
4839, 47syl 17 . . . . . . . . . . . . . 14  |-  ( A 
C_  NN  ->  ( n  e.  A  <->  E. m  e.  ( `' G " A ) ( ( G  |`  ( `' G " A ) ) `
 m )  =  n ) )
4948biimpa 501 . . . . . . . . . . . . 13  |-  ( ( A  C_  NN  /\  n  e.  A )  ->  E. m  e.  ( `' G " A ) ( ( G  |`  ( `' G " A ) ) `
 m )  =  n )
50 fvres 6207 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  e.  ( `' G " A )  ->  (
( G  |`  ( `' G " A ) ) `  m )  =  ( G `  m ) )
5150eqeq1d 2624 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  ( `' G " A )  ->  (
( ( G  |`  ( `' G " A ) ) `  m )  =  n  <->  ( G `  m )  =  n ) )
5251biimpa 501 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  e.  ( `' G " A )  /\  ( ( G  |`  ( `' G " A ) ) `  m )  =  n )  ->  ( G `  m )  =  n )
5352adantll 750 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  om  /\  m  e.  ( `' G " A ) )  /\  ( ( G  |`  ( `' G " A ) ) `
 m )  =  n )  ->  ( G `  m )  =  n )
5424sseli 3599 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  ( `' G " A )  ->  m  e.  om )
553, 4om2uzlt2i 12750 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  om  /\  m  e.  om )  ->  ( y  e.  m  <->  ( G `  y )  <  ( G `  m ) ) )
5654, 55sylan2 491 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  om  /\  m  e.  ( `' G " A ) )  ->  ( y  e.  m  <->  ( G `  y )  <  ( G `  m )
) )
57 breq2 4657 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G `  m )  =  n  ->  (
( G `  y
)  <  ( G `  m )  <->  ( G `  y )  <  n
) )
5856, 57sylan9bb 736 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  om  /\  m  e.  ( `' G " A ) )  /\  ( G `
 m )  =  n )  ->  (
y  e.  m  <->  ( G `  y )  <  n
) )
5953, 58syldan 487 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  om  /\  m  e.  ( `' G " A ) )  /\  ( ( G  |`  ( `' G " A ) ) `
 m )  =  n )  ->  (
y  e.  m  <->  ( G `  y )  <  n
) )
6059biimparc 504 . . . . . . . . . . . . . . . 16  |-  ( ( ( G `  y
)  <  n  /\  ( ( y  e. 
om  /\  m  e.  ( `' G " A ) )  /\  ( ( G  |`  ( `' G " A ) ) `
 m )  =  n ) )  -> 
y  e.  m )
6160exp44 641 . . . . . . . . . . . . . . 15  |-  ( ( G `  y )  <  n  ->  (
y  e.  om  ->  ( m  e.  ( `' G " A )  ->  ( ( ( G  |`  ( `' G " A ) ) `
 m )  =  n  ->  y  e.  m ) ) ) )
6261imp31 448 . . . . . . . . . . . . . 14  |-  ( ( ( ( G `  y )  <  n  /\  y  e.  om )  /\  m  e.  ( `' G " A ) )  ->  ( (
( G  |`  ( `' G " A ) ) `  m )  =  n  ->  y  e.  m ) )
6362reximdva 3017 . . . . . . . . . . . . 13  |-  ( ( ( G `  y
)  <  n  /\  y  e.  om )  ->  ( E. m  e.  ( `' G " A ) ( ( G  |`  ( `' G " A ) ) `
 m )  =  n  ->  E. m  e.  ( `' G " A ) y  e.  m ) )
6449, 63syl5 34 . . . . . . . . . . . 12  |-  ( ( ( G `  y
)  <  n  /\  y  e.  om )  ->  ( ( A  C_  NN  /\  n  e.  A
)  ->  E. m  e.  ( `' G " A ) y  e.  m ) )
6564exp4b 632 . . . . . . . . . . 11  |-  ( ( G `  y )  <  n  ->  (
y  e.  om  ->  ( A  C_  NN  ->  ( n  e.  A  ->  E. m  e.  ( `' G " A ) y  e.  m ) ) ) )
6665com4l 92 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( A  C_  NN  ->  (
n  e.  A  -> 
( ( G `  y )  <  n  ->  E. m  e.  ( `' G " A ) y  e.  m ) ) ) )
6766imp 445 . . . . . . . . 9  |-  ( ( y  e.  om  /\  A  C_  NN )  -> 
( n  e.  A  ->  ( ( G `  y )  <  n  ->  E. m  e.  ( `' G " A ) y  e.  m ) ) )
6867rexlimdv 3030 . . . . . . . 8  |-  ( ( y  e.  om  /\  A  C_  NN )  -> 
( E. n  e.  A  ( G `  y )  <  n  ->  E. m  e.  ( `' G " A ) y  e.  m ) )
6931, 68syld 47 . . . . . . 7  |-  ( ( y  e.  om  /\  A  C_  NN )  -> 
( A. m  e.  NN  E. n  e.  A  m  <  n  ->  E. m  e.  ( `' G " A ) y  e.  m ) )
7069ex 450 . . . . . 6  |-  ( y  e.  om  ->  ( A  C_  NN  ->  ( A. m  e.  NN  E. n  e.  A  m  <  n  ->  E. m  e.  ( `' G " A ) y  e.  m ) ) )
7170com3l 89 . . . . 5  |-  ( A 
C_  NN  ->  ( A. m  e.  NN  E. n  e.  A  m  <  n  ->  ( y  e. 
om  ->  E. m  e.  ( `' G " A ) y  e.  m ) ) )
7271imp 445 . . . 4  |-  ( ( A  C_  NN  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  ( y  e.  om  ->  E. m  e.  ( `' G " A ) y  e.  m ) )
7372ralrimiv 2965 . . 3  |-  ( ( A  C_  NN  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A. y  e.  om  E. m  e.  ( `' G " A ) y  e.  m )
74 unbnn3 8556 . . 3  |-  ( ( ( `' G " A )  C_  om  /\  A. y  e.  om  E. m  e.  ( `' G " A ) y  e.  m )  -> 
( `' G " A )  ~~  om )
7524, 73, 74sylancr 695 . 2  |-  ( ( A  C_  NN  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  ( `' G " A )  ~~  om )
76 entr 8008 . 2  |-  ( ( A  ~~  ( `' G " A )  /\  ( `' G " A )  ~~  om )  ->  A  ~~  om )
7717, 75, 76syl2anc 693 1  |-  ( ( A  C_  NN  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A  ~~  om )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   omcom 7065   reccrdg 7505    ~~ cen 7952   1c1 9937    + caddc 9939    < clt 10074   NNcn 11020   ZZ>=cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  unben  15613
  Copyright terms: Public domain W3C validator