MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2wlkneq Structured version   Visualization version   Unicode version

Theorem usgr2wlkneq 26652
Description: The vertices and edges are pairwise different in a walk of length 2 in a simple graph. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 26-Jan-2021.)
Assertion
Ref Expression
usgr2wlkneq  |-  ( ( ( G  e. USGraph  /\  F
(Walks `  G ) P )  /\  (
( # `  F )  =  2  /\  ( P `  0 )  =/=  ( P `  ( # `
 F ) ) ) )  ->  (
( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  0
)  =/=  ( P `
 2 )  /\  ( P `  1 )  =/=  ( P ` 
2 ) )  /\  ( F `  0 )  =/=  ( F ` 
1 ) ) )

Proof of Theorem usgr2wlkneq
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 usgrupgr 26077 . . . 4  |-  ( G  e. USGraph  ->  G  e. UPGraph  )
2 eqid 2622 . . . . 5  |-  (Vtx `  G )  =  (Vtx
`  G )
3 eqid 2622 . . . . 5  |-  (iEdg `  G )  =  (iEdg `  G )
42, 3upgriswlk 26537 . . . 4  |-  ( G  e. UPGraph  ->  ( F (Walks `  G ) P  <->  ( F  e. Word  dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
51, 4syl 17 . . 3  |-  ( G  e. USGraph  ->  ( F (Walks `  G ) P  <->  ( F  e. Word  dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
6 2wlklem 26563 . . . . . . . . . . . 12  |-  ( A. k  e.  { 0 ,  1 }  (
(iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) }  <-> 
( ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( (iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } ) )
7 simplll 798 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. USGraph  /\  F  e. Word  dom  (iEdg `  G ) )  /\  ( P `  0 )  =/=  ( P ` 
2 ) )  /\  P : ( 0 ... 2 ) --> (Vtx `  G ) )  ->  G  e. USGraph  )
8 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( P `
 0 )  e. 
_V
93usgrnloopv 26092 . . . . . . . . . . . . . . 15  |-  ( ( G  e. USGraph  /\  ( P `  0 )  e.  _V )  ->  (
( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  ->  ( P `  0 )  =/=  ( P `  1
) ) )
107, 8, 9sylancl 694 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. USGraph  /\  F  e. Word  dom  (iEdg `  G ) )  /\  ( P `  0 )  =/=  ( P ` 
2 ) )  /\  P : ( 0 ... 2 ) --> (Vtx `  G ) )  -> 
( ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  ->  ( P `  0 )  =/=  ( P ` 
1 ) ) )
11 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( P `
 1 )  e. 
_V
123usgrnloopv 26092 . . . . . . . . . . . . . . 15  |-  ( ( G  e. USGraph  /\  ( P `  1 )  e.  _V )  ->  (
( (iEdg `  G
) `  ( F `  1 ) )  =  { ( P `
 1 ) ,  ( P `  2
) }  ->  ( P `  1 )  =/=  ( P `  2
) ) )
137, 11, 12sylancl 694 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. USGraph  /\  F  e. Word  dom  (iEdg `  G ) )  /\  ( P `  0 )  =/=  ( P ` 
2 ) )  /\  P : ( 0 ... 2 ) --> (Vtx `  G ) )  -> 
( ( (iEdg `  G ) `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) }  ->  ( P `  1 )  =/=  ( P ` 
2 ) ) )
1410, 13anim12d 586 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. USGraph  /\  F  e. Word  dom  (iEdg `  G ) )  /\  ( P `  0 )  =/=  ( P ` 
2 ) )  /\  P : ( 0 ... 2 ) --> (Vtx `  G ) )  -> 
( ( ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( (iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( ( P `  0 )  =/=  ( P `  1
)  /\  ( P `  1 )  =/=  ( P `  2
) ) ) )
15 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( F `  0 )  =  ( F ` 
1 )  ->  (
(iEdg `  G ) `  ( F `  0
) )  =  ( (iEdg `  G ) `  ( F `  1
) ) )
1615eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F `  0 )  =  ( F ` 
1 )  ->  (
( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  <->  ( (iEdg `  G ) `  ( F `  1 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) } ) )
17 eqtr2 2642 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( (iEdg `  G
) `  ( F `  1 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  { ( P `  0 ) ,  ( P ` 
1 ) }  =  { ( P ` 
1 ) ,  ( P `  2 ) } )
18 prcom 4267 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  { ( P `  1 ) ,  ( P ` 
2 ) }  =  { ( P ` 
2 ) ,  ( P `  1 ) }
1918eqeq2i 2634 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( { ( P `  0
) ,  ( P `
 1 ) }  =  { ( P `
 1 ) ,  ( P `  2
) }  <->  { ( P `  0 ) ,  ( P ` 
1 ) }  =  { ( P ` 
2 ) ,  ( P `  1 ) } )
20 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( P `
 2 )  e. 
_V
218, 20preqr1 4379 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( { ( P `  0
) ,  ( P `
 1 ) }  =  { ( P `
 2 ) ,  ( P `  1
) }  ->  ( P `  0 )  =  ( P ` 
2 ) )
2219, 21sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( { ( P `  0
) ,  ( P `
 1 ) }  =  { ( P `
 1 ) ,  ( P `  2
) }  ->  ( P `  0 )  =  ( P ` 
2 ) )
2317, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( (iEdg `  G
) `  ( F `  1 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( P `  0 )  =  ( P `  2
) )
2423ex 450 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( (iEdg `  G ) `  ( F `  1
) )  =  {
( P `  0
) ,  ( P `
 1 ) }  ->  ( ( (iEdg `  G ) `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) }  ->  ( P `  0 )  =  ( P ` 
2 ) ) )
2516, 24syl6bi 243 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( F `  0 )  =  ( F ` 
1 )  ->  (
( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  ->  (
( (iEdg `  G
) `  ( F `  1 ) )  =  { ( P `
 1 ) ,  ( P `  2
) }  ->  ( P `  0 )  =  ( P ` 
2 ) ) ) )
2625impd 447 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F `  0 )  =  ( F ` 
1 )  ->  (
( ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( (iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( P `  0 )  =  ( P `  2
) ) )
2726com12 32 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( ( F `  0 )  =  ( F ` 
1 )  ->  ( P `  0 )  =  ( P ` 
2 ) ) )
2827necon3d 2815 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( ( P `  0 )  =/=  ( P `  2
)  ->  ( F `  0 )  =/=  ( F `  1
) ) )
2928com12 32 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P `  0 )  =/=  ( P ` 
2 )  ->  (
( ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( (iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( F `  0 )  =/=  ( F `  1
) ) )
3029adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P `  0
)  =/=  ( P `
 2 )  /\  ( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  1
)  =/=  ( P `
 2 ) ) )  ->  ( (
( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( F `  0 )  =/=  ( F `  1
) ) )
31 simpl 473 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P `  0
)  =/=  ( P `
 1 )  /\  ( P `  1 )  =/=  ( P ` 
2 ) )  -> 
( P `  0
)  =/=  ( P `
 1 ) )
3231adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P `  0
)  =/=  ( P `
 2 )  /\  ( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  1
)  =/=  ( P `
 2 ) ) )  ->  ( P `  0 )  =/=  ( P `  1
) )
33 simpl 473 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P `  0
)  =/=  ( P `
 2 )  /\  ( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  1
)  =/=  ( P `
 2 ) ) )  ->  ( P `  0 )  =/=  ( P `  2
) )
34 simprr 796 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P `  0
)  =/=  ( P `
 2 )  /\  ( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  1
)  =/=  ( P `
 2 ) ) )  ->  ( P `  1 )  =/=  ( P `  2
) )
3532, 33, 343jca 1242 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P `  0
)  =/=  ( P `
 2 )  /\  ( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  1
)  =/=  ( P `
 2 ) ) )  ->  ( ( P `  0 )  =/=  ( P `  1
)  /\  ( P `  0 )  =/=  ( P `  2
)  /\  ( P `  1 )  =/=  ( P `  2
) ) )
3630, 35jctild 566 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P `  0
)  =/=  ( P `
 2 )  /\  ( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  1
)  =/=  ( P `
 2 ) ) )  ->  ( (
( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( (
( P `  0
)  =/=  ( P `
 1 )  /\  ( P `  0 )  =/=  ( P ` 
2 )  /\  ( P `  1 )  =/=  ( P `  2
) )  /\  ( F `  0 )  =/=  ( F `  1
) ) ) )
3736ex 450 . . . . . . . . . . . . . . . 16  |-  ( ( P `  0 )  =/=  ( P ` 
2 )  ->  (
( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  1
)  =/=  ( P `
 2 ) )  ->  ( ( ( (iEdg `  G ) `  ( F `  0
) )  =  {
( P `  0
) ,  ( P `
 1 ) }  /\  ( (iEdg `  G ) `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } )  ->  ( ( ( P `  0 )  =/=  ( P ` 
1 )  /\  ( P `  0 )  =/=  ( P `  2
)  /\  ( P `  1 )  =/=  ( P `  2
) )  /\  ( F `  0 )  =/=  ( F `  1
) ) ) ) )
3837com23 86 . . . . . . . . . . . . . . 15  |-  ( ( P `  0 )  =/=  ( P ` 
2 )  ->  (
( ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( (iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( (
( P `  0
)  =/=  ( P `
 1 )  /\  ( P `  1 )  =/=  ( P ` 
2 ) )  -> 
( ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  0 )  =/=  ( P `  2
)  /\  ( P `  1 )  =/=  ( P `  2
) )  /\  ( F `  0 )  =/=  ( F `  1
) ) ) ) )
3938adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. USGraph  /\  F  e. Word  dom  (iEdg `  G
) )  /\  ( P `  0 )  =/=  ( P `  2
) )  ->  (
( ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( (iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( (
( P `  0
)  =/=  ( P `
 1 )  /\  ( P `  1 )  =/=  ( P ` 
2 ) )  -> 
( ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  0 )  =/=  ( P `  2
)  /\  ( P `  1 )  =/=  ( P `  2
) )  /\  ( F `  0 )  =/=  ( F `  1
) ) ) ) )
4039adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. USGraph  /\  F  e. Word  dom  (iEdg `  G ) )  /\  ( P `  0 )  =/=  ( P ` 
2 ) )  /\  P : ( 0 ... 2 ) --> (Vtx `  G ) )  -> 
( ( ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( (iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( (
( P `  0
)  =/=  ( P `
 1 )  /\  ( P `  1 )  =/=  ( P ` 
2 ) )  -> 
( ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  0 )  =/=  ( P `  2
)  /\  ( P `  1 )  =/=  ( P `  2
) )  /\  ( F `  0 )  =/=  ( F `  1
) ) ) ) )
4114, 40mpdd 43 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. USGraph  /\  F  e. Word  dom  (iEdg `  G ) )  /\  ( P `  0 )  =/=  ( P ` 
2 ) )  /\  P : ( 0 ... 2 ) --> (Vtx `  G ) )  -> 
( ( ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( (iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( (
( P `  0
)  =/=  ( P `
 1 )  /\  ( P `  0 )  =/=  ( P ` 
2 )  /\  ( P `  1 )  =/=  ( P `  2
) )  /\  ( F `  0 )  =/=  ( F `  1
) ) ) )
426, 41syl5bi 232 . . . . . . . . . . 11  |-  ( ( ( ( G  e. USGraph  /\  F  e. Word  dom  (iEdg `  G ) )  /\  ( P `  0 )  =/=  ( P ` 
2 ) )  /\  P : ( 0 ... 2 ) --> (Vtx `  G ) )  -> 
( A. k  e. 
{ 0 ,  1 }  ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  ->  ( ( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  0
)  =/=  ( P `
 2 )  /\  ( P `  1 )  =/=  ( P ` 
2 ) )  /\  ( F `  0 )  =/=  ( F ` 
1 ) ) ) )
4342ex 450 . . . . . . . . . 10  |-  ( ( ( G  e. USGraph  /\  F  e. Word  dom  (iEdg `  G
) )  /\  ( P `  0 )  =/=  ( P `  2
) )  ->  ( P : ( 0 ... 2 ) --> (Vtx `  G )  ->  ( A. k  e.  { 0 ,  1 }  (
(iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) }  ->  ( ( ( P `  0 )  =/=  ( P ` 
1 )  /\  ( P `  0 )  =/=  ( P `  2
)  /\  ( P `  1 )  =/=  ( P `  2
) )  /\  ( F `  0 )  =/=  ( F `  1
) ) ) ) )
4443com23 86 . . . . . . . . 9  |-  ( ( ( G  e. USGraph  /\  F  e. Word  dom  (iEdg `  G
) )  /\  ( P `  0 )  =/=  ( P `  2
) )  ->  ( A. k  e.  { 0 ,  1 }  (
(iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) }  ->  ( P :
( 0 ... 2
) --> (Vtx `  G
)  ->  ( (
( P `  0
)  =/=  ( P `
 1 )  /\  ( P `  0 )  =/=  ( P ` 
2 )  /\  ( P `  1 )  =/=  ( P `  2
) )  /\  ( F `  0 )  =/=  ( F `  1
) ) ) ) )
4544ex 450 . . . . . . . 8  |-  ( ( G  e. USGraph  /\  F  e. Word  dom  (iEdg `  G )
)  ->  ( ( P `  0 )  =/=  ( P `  2
)  ->  ( A. k  e.  { 0 ,  1 }  (
(iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) }  ->  ( P :
( 0 ... 2
) --> (Vtx `  G
)  ->  ( (
( P `  0
)  =/=  ( P `
 1 )  /\  ( P `  0 )  =/=  ( P ` 
2 )  /\  ( P `  1 )  =/=  ( P `  2
) )  /\  ( F `  0 )  =/=  ( F `  1
) ) ) ) ) )
46 fveq2 6191 . . . . . . . . . 10  |-  ( (
# `  F )  =  2  ->  ( P `  ( # `  F
) )  =  ( P `  2 ) )
4746neeq2d 2854 . . . . . . . . 9  |-  ( (
# `  F )  =  2  ->  (
( P `  0
)  =/=  ( P `
 ( # `  F
) )  <->  ( P `  0 )  =/=  ( P `  2
) ) )
48 oveq2 6658 . . . . . . . . . . . 12  |-  ( (
# `  F )  =  2  ->  (
0..^ ( # `  F
) )  =  ( 0..^ 2 ) )
49 fzo0to2pr 12553 . . . . . . . . . . . 12  |-  ( 0..^ 2 )  =  {
0 ,  1 }
5048, 49syl6eq 2672 . . . . . . . . . . 11  |-  ( (
# `  F )  =  2  ->  (
0..^ ( # `  F
) )  =  {
0 ,  1 } )
5150raleqdv 3144 . . . . . . . . . 10  |-  ( (
# `  F )  =  2  ->  ( A. k  e.  (
0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  A. k  e.  { 0 ,  1 }  ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
52 oveq2 6658 . . . . . . . . . . . 12  |-  ( (
# `  F )  =  2  ->  (
0 ... ( # `  F
) )  =  ( 0 ... 2 ) )
5352feq2d 6031 . . . . . . . . . . 11  |-  ( (
# `  F )  =  2  ->  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  <->  P :
( 0 ... 2
) --> (Vtx `  G
) ) )
5453imbi1d 331 . . . . . . . . . 10  |-  ( (
# `  F )  =  2  ->  (
( P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G )  -> 
( ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  0 )  =/=  ( P `  2
)  /\  ( P `  1 )  =/=  ( P `  2
) )  /\  ( F `  0 )  =/=  ( F `  1
) ) )  <->  ( P : ( 0 ... 2 ) --> (Vtx `  G )  ->  (
( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  0
)  =/=  ( P `
 2 )  /\  ( P `  1 )  =/=  ( P ` 
2 ) )  /\  ( F `  0 )  =/=  ( F ` 
1 ) ) ) ) )
5551, 54imbi12d 334 . . . . . . . . 9  |-  ( (
# `  F )  =  2  ->  (
( A. k  e.  ( 0..^ ( # `  F ) ) ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) }  ->  ( P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  ->  ( ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  0 )  =/=  ( P `  2
)  /\  ( P `  1 )  =/=  ( P `  2
) )  /\  ( F `  0 )  =/=  ( F `  1
) ) ) )  <-> 
( A. k  e. 
{ 0 ,  1 }  ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  ->  ( P : ( 0 ... 2 ) --> (Vtx
`  G )  -> 
( ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  0 )  =/=  ( P `  2
)  /\  ( P `  1 )  =/=  ( P `  2
) )  /\  ( F `  0 )  =/=  ( F `  1
) ) ) ) ) )
5647, 55imbi12d 334 . . . . . . . 8  |-  ( (
# `  F )  =  2  ->  (
( ( P ` 
0 )  =/=  ( P `  ( # `  F
) )  ->  ( A. k  e.  (
0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  ->  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  (
( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  0
)  =/=  ( P `
 2 )  /\  ( P `  1 )  =/=  ( P ` 
2 ) )  /\  ( F `  0 )  =/=  ( F ` 
1 ) ) ) ) )  <->  ( ( P `  0 )  =/=  ( P `  2
)  ->  ( A. k  e.  { 0 ,  1 }  (
(iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) }  ->  ( P :
( 0 ... 2
) --> (Vtx `  G
)  ->  ( (
( P `  0
)  =/=  ( P `
 1 )  /\  ( P `  0 )  =/=  ( P ` 
2 )  /\  ( P `  1 )  =/=  ( P `  2
) )  /\  ( F `  0 )  =/=  ( F `  1
) ) ) ) ) ) )
5745, 56syl5ibrcom 237 . . . . . . 7  |-  ( ( G  e. USGraph  /\  F  e. Word  dom  (iEdg `  G )
)  ->  ( ( # `
 F )  =  2  ->  ( ( P `  0 )  =/=  ( P `  ( # `
 F ) )  ->  ( A. k  e.  ( 0..^ ( # `  F ) ) ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) }  ->  ( P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  ->  ( ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  0 )  =/=  ( P `  2
)  /\  ( P `  1 )  =/=  ( P `  2
) )  /\  ( F `  0 )  =/=  ( F `  1
) ) ) ) ) ) )
5857impd 447 . . . . . 6  |-  ( ( G  e. USGraph  /\  F  e. Word  dom  (iEdg `  G )
)  ->  ( (
( # `  F )  =  2  /\  ( P `  0 )  =/=  ( P `  ( # `
 F ) ) )  ->  ( A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  ->  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  (
( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  0
)  =/=  ( P `
 2 )  /\  ( P `  1 )  =/=  ( P ` 
2 ) )  /\  ( F `  0 )  =/=  ( F ` 
1 ) ) ) ) ) )
5958com24 95 . . . . 5  |-  ( ( G  e. USGraph  /\  F  e. Word  dom  (iEdg `  G )
)  ->  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  ( A. k  e.  (
0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  ->  ( ( ( # `  F
)  =  2  /\  ( P `  0
)  =/=  ( P `
 ( # `  F
) ) )  -> 
( ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  0 )  =/=  ( P `  2
)  /\  ( P `  1 )  =/=  ( P `  2
) )  /\  ( F `  0 )  =/=  ( F `  1
) ) ) ) ) )
6059ex 450 . . . 4  |-  ( G  e. USGraph  ->  ( F  e. Word  dom  (iEdg `  G )  ->  ( P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G )  -> 
( A. k  e.  ( 0..^ ( # `  F ) ) ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) }  ->  ( ( (
# `  F )  =  2  /\  ( P `  0 )  =/=  ( P `  ( # `
 F ) ) )  ->  ( (
( P `  0
)  =/=  ( P `
 1 )  /\  ( P `  0 )  =/=  ( P ` 
2 )  /\  ( P `  1 )  =/=  ( P `  2
) )  /\  ( F `  0 )  =/=  ( F `  1
) ) ) ) ) ) )
61603impd 1281 . . 3  |-  ( G  e. USGraph  ->  ( ( F  e. Word  dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  ( ( (
# `  F )  =  2  /\  ( P `  0 )  =/=  ( P `  ( # `
 F ) ) )  ->  ( (
( P `  0
)  =/=  ( P `
 1 )  /\  ( P `  0 )  =/=  ( P ` 
2 )  /\  ( P `  1 )  =/=  ( P `  2
) )  /\  ( F `  0 )  =/=  ( F `  1
) ) ) ) )
625, 61sylbid 230 . 2  |-  ( G  e. USGraph  ->  ( F (Walks `  G ) P  -> 
( ( ( # `  F )  =  2  /\  ( P ` 
0 )  =/=  ( P `  ( # `  F
) ) )  -> 
( ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  0 )  =/=  ( P `  2
)  /\  ( P `  1 )  =/=  ( P `  2
) )  /\  ( F `  0 )  =/=  ( F `  1
) ) ) ) )
6362imp31 448 1  |-  ( ( ( G  e. USGraph  /\  F
(Walks `  G ) P )  /\  (
( # `  F )  =  2  /\  ( P `  0 )  =/=  ( P `  ( # `
 F ) ) ) )  ->  (
( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  0
)  =/=  ( P `
 2 )  /\  ( P `  1 )  =/=  ( P ` 
2 ) )  /\  ( F `  0 )  =/=  ( F ` 
1 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   {cpr 4179   class class class wbr 4653   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   2c2 11070   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975   USGraph cusgr 26044  Walkscwlks 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-wlks 26495
This theorem is referenced by:  usgr2wlkspthlem1  26653  usgr2wlkspthlem2  26654
  Copyright terms: Public domain W3C validator