MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem11 Structured version   Visualization version   GIF version

Theorem vdwlem11 15695
Description: Lemma for vdw 15698. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdwlem9.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem9.s (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝐾 MonoAP 𝑓)
Assertion
Ref Expression
vdwlem11 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(𝐾 + 1) MonoAP 𝑓)
Distinct variable groups:   𝜑,𝑛,𝑓   𝑓,𝑠,𝐾,𝑛   𝑅,𝑓,𝑛,𝑠   𝜑,𝑓
Allowed substitution hint:   𝜑(𝑠)

Proof of Theorem vdwlem11
Dummy variables 𝑎 𝑑 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdw.r . . 3 (𝜑𝑅 ∈ Fin)
2 vdwlem9.k . . 3 (𝜑𝐾 ∈ (ℤ‘2))
3 vdwlem9.s . . 3 (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝐾 MonoAP 𝑓)
4 hashcl 13147 . . . . 5 (𝑅 ∈ Fin → (#‘𝑅) ∈ ℕ0)
51, 4syl 17 . . . 4 (𝜑 → (#‘𝑅) ∈ ℕ0)
6 nn0p1nn 11332 . . . 4 ((#‘𝑅) ∈ ℕ0 → ((#‘𝑅) + 1) ∈ ℕ)
75, 6syl 17 . . 3 (𝜑 → ((#‘𝑅) + 1) ∈ ℕ)
81, 2, 3, 7vdwlem10 15694 . 2 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
91adantr 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ Fin)
10 ovex 6678 . . . . . . 7 (1...𝑛) ∈ V
11 elmapg 7870 . . . . . . 7 ((𝑅 ∈ Fin ∧ (1...𝑛) ∈ V) → (𝑓 ∈ (𝑅𝑚 (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅))
129, 10, 11sylancl 694 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑓 ∈ (𝑅𝑚 (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅))
1312biimpa 501 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅𝑚 (1...𝑛))) → 𝑓:(1...𝑛)⟶𝑅)
145nn0red 11352 . . . . . . . . . . 11 (𝜑 → (#‘𝑅) ∈ ℝ)
1514ltp1d 10954 . . . . . . . . . 10 (𝜑 → (#‘𝑅) < ((#‘𝑅) + 1))
16 peano2re 10209 . . . . . . . . . . . 12 ((#‘𝑅) ∈ ℝ → ((#‘𝑅) + 1) ∈ ℝ)
1714, 16syl 17 . . . . . . . . . . 11 (𝜑 → ((#‘𝑅) + 1) ∈ ℝ)
1814, 17ltnled 10184 . . . . . . . . . 10 (𝜑 → ((#‘𝑅) < ((#‘𝑅) + 1) ↔ ¬ ((#‘𝑅) + 1) ≤ (#‘𝑅)))
1915, 18mpbid 222 . . . . . . . . 9 (𝜑 → ¬ ((#‘𝑅) + 1) ≤ (#‘𝑅))
2019adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ¬ ((#‘𝑅) + 1) ≤ (#‘𝑅))
21 eluz2nn 11726 . . . . . . . . . . . . 13 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
222, 21syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℕ)
2322adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝐾 ∈ ℕ)
2423nnnn0d 11351 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝐾 ∈ ℕ0)
25 simprr 796 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝑓:(1...𝑛)⟶𝑅)
267adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ((#‘𝑅) + 1) ∈ ℕ)
27 eqid 2622 . . . . . . . . . 10 (1...((#‘𝑅) + 1)) = (1...((#‘𝑅) + 1))
2810, 24, 25, 26, 27vdwpc 15684 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1)))(∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((#‘𝑅) + 1))))
291ad3antrrr 766 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → 𝑅 ∈ Fin)
3025ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) → 𝑓:(1...𝑛)⟶𝑅)
31 simpr 477 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}))
32 cnvimass 5485 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ⊆ dom 𝑓
3331, 32syl6ss 3615 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ dom 𝑓)
3425ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → 𝑓:(1...𝑛)⟶𝑅)
35 fdm 6051 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:(1...𝑛)⟶𝑅 → dom 𝑓 = (1...𝑛))
3634, 35syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → dom 𝑓 = (1...𝑛))
3733, 36sseqtrd 3641 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (1...𝑛))
3822ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) → 𝐾 ∈ ℕ)
39 simplrl 800 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) → 𝑎 ∈ ℕ)
40 simprr 796 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) → 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))
41 nnex 11026 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ℕ ∈ V
42 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (1...((#‘𝑅) + 1)) ∈ V
4341, 42elmap 7886 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))) ↔ 𝑑:(1...((#‘𝑅) + 1))⟶ℕ)
4440, 43sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) → 𝑑:(1...((#‘𝑅) + 1))⟶ℕ)
4544ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) → (𝑑𝑖) ∈ ℕ)
4639, 45nnaddcld 11067 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) → (𝑎 + (𝑑𝑖)) ∈ ℕ)
47 vdwapid1 15679 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℕ ∧ (𝑎 + (𝑑𝑖)) ∈ ℕ ∧ (𝑑𝑖) ∈ ℕ) → (𝑎 + (𝑑𝑖)) ∈ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
4838, 46, 45, 47syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) → (𝑎 + (𝑑𝑖)) ∈ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
4948adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (𝑎 + (𝑑𝑖)) ∈ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
5037, 49sseldd 3604 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (𝑎 + (𝑑𝑖)) ∈ (1...𝑛))
5150ex 450 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) → (𝑎 + (𝑑𝑖)) ∈ (1...𝑛)))
52 ffvelrn 6357 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑛)⟶𝑅 ∧ (𝑎 + (𝑑𝑖)) ∈ (1...𝑛)) → (𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅)
5330, 51, 52syl6an 568 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) → (𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅))
5453ralimdva 2962 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) → (∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) → ∀𝑖 ∈ (1...((#‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅))
5554imp 445 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ∀𝑖 ∈ (1...((#‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅)
56 eqid 2622 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) = (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))
5756fmpt 6381 . . . . . . . . . . . . . . . 16 (∀𝑖 ∈ (1...((#‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅 ↔ (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))):(1...((#‘𝑅) + 1))⟶𝑅)
5855, 57sylib 208 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))):(1...((#‘𝑅) + 1))⟶𝑅)
59 frn 6053 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))):(1...((#‘𝑅) + 1))⟶𝑅 → ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ⊆ 𝑅)
6058, 59syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ⊆ 𝑅)
61 ssdomg 8001 . . . . . . . . . . . . . 14 (𝑅 ∈ Fin → (ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ⊆ 𝑅 → ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅))
6229, 60, 61sylc 65 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅)
63 ssfi 8180 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Fin ∧ ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ⊆ 𝑅) → ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ∈ Fin)
6429, 60, 63syl2anc 693 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ∈ Fin)
65 hashdom 13168 . . . . . . . . . . . . . 14 ((ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ∈ Fin ∧ 𝑅 ∈ Fin) → ((#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (#‘𝑅) ↔ ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅))
6664, 29, 65syl2anc 693 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (#‘𝑅) ↔ ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅))
6762, 66mpbird 247 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (#‘𝑅))
68 breq1 4656 . . . . . . . . . . . 12 ((#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((#‘𝑅) + 1) → ((#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (#‘𝑅) ↔ ((#‘𝑅) + 1) ≤ (#‘𝑅)))
6967, 68syl5ibcom 235 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((#‘𝑅) + 1) → ((#‘𝑅) + 1) ≤ (#‘𝑅)))
7069expimpd 629 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) → ((∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((#‘𝑅) + 1)) → ((#‘𝑅) + 1) ≤ (#‘𝑅)))
7170rexlimdvva 3038 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1)))(∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((#‘𝑅) + 1)) → ((#‘𝑅) + 1) ≤ (#‘𝑅)))
7228, 71sylbid 230 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 → ((#‘𝑅) + 1) ≤ (#‘𝑅)))
7320, 72mtod 189 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ¬ ⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓)
74 biorf 420 . . . . . . 7 (¬ ⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7573, 74syl 17 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7675anassrs 680 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓:(1...𝑛)⟶𝑅) → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7713, 76syldan 487 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅𝑚 (1...𝑛))) → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7877ralbidva 2985 . . 3 ((𝜑𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(𝐾 + 1) MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7978rexbidva 3049 . 2 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(𝐾 + 1) MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
808, 79mpbird 247 1 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(𝐾 + 1) MonoAP 𝑓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574  {csn 4177  cop 4183   class class class wbr 4653  cmpt 4729  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  cdom 7953  Fincfn 7955  cr 9935  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cn 11020  2c2 11070  0cn0 11292  cuz 11687  ...cfz 12326  #chash 13117  APcvdwa 15669   MonoAP cvdwm 15670   PolyAP cvdwp 15671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-hash 13118  df-vdwap 15672  df-vdwmc 15673  df-vdwpc 15674
This theorem is referenced by:  vdwlem13  15697
  Copyright terms: Public domain W3C validator