| Step | Hyp | Ref
| Expression |
| 1 | | vdw.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Fin) |
| 2 | | vdwlem9.k |
. . 3
⊢ (𝜑 → 𝐾 ∈
(ℤ≥‘2)) |
| 3 | | vdwlem9.s |
. . 3
⊢ (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓) |
| 4 | | hashcl 13147 |
. . . . 5
⊢ (𝑅 ∈ Fin →
(#‘𝑅) ∈
ℕ0) |
| 5 | 1, 4 | syl 17 |
. . . 4
⊢ (𝜑 → (#‘𝑅) ∈
ℕ0) |
| 6 | | nn0p1nn 11332 |
. . . 4
⊢
((#‘𝑅) ∈
ℕ0 → ((#‘𝑅) + 1) ∈ ℕ) |
| 7 | 5, 6 | syl 17 |
. . 3
⊢ (𝜑 → ((#‘𝑅) + 1) ∈
ℕ) |
| 8 | 1, 2, 3, 7 | vdwlem10 15694 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))(〈((#‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) |
| 9 | 1 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑅 ∈ Fin) |
| 10 | | ovex 6678 |
. . . . . . 7
⊢
(1...𝑛) ∈
V |
| 11 | | elmapg 7870 |
. . . . . . 7
⊢ ((𝑅 ∈ Fin ∧ (1...𝑛) ∈ V) → (𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅)) |
| 12 | 9, 10, 11 | sylancl 694 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅)) |
| 13 | 12 | biimpa 501 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))) → 𝑓:(1...𝑛)⟶𝑅) |
| 14 | 5 | nn0red 11352 |
. . . . . . . . . . 11
⊢ (𝜑 → (#‘𝑅) ∈ ℝ) |
| 15 | 14 | ltp1d 10954 |
. . . . . . . . . 10
⊢ (𝜑 → (#‘𝑅) < ((#‘𝑅) + 1)) |
| 16 | | peano2re 10209 |
. . . . . . . . . . . 12
⊢
((#‘𝑅) ∈
ℝ → ((#‘𝑅)
+ 1) ∈ ℝ) |
| 17 | 14, 16 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((#‘𝑅) + 1) ∈
ℝ) |
| 18 | 14, 17 | ltnled 10184 |
. . . . . . . . . 10
⊢ (𝜑 → ((#‘𝑅) < ((#‘𝑅) + 1) ↔ ¬
((#‘𝑅) + 1) ≤
(#‘𝑅))) |
| 19 | 15, 18 | mpbid 222 |
. . . . . . . . 9
⊢ (𝜑 → ¬ ((#‘𝑅) + 1) ≤ (#‘𝑅)) |
| 20 | 19 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ¬ ((#‘𝑅) + 1) ≤ (#‘𝑅)) |
| 21 | | eluz2nn 11726 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈
(ℤ≥‘2) → 𝐾 ∈ ℕ) |
| 22 | 2, 21 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 23 | 22 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝐾 ∈ ℕ) |
| 24 | 23 | nnnn0d 11351 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝐾 ∈
ℕ0) |
| 25 | | simprr 796 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝑓:(1...𝑛)⟶𝑅) |
| 26 | 7 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ((#‘𝑅) + 1) ∈ ℕ) |
| 27 | | eqid 2622 |
. . . . . . . . . 10
⊢
(1...((#‘𝑅) +
1)) = (1...((#‘𝑅) +
1)) |
| 28 | 10, 24, 25, 26, 27 | vdwpc 15684 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (〈((#‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) +
1)))(∀𝑖 ∈
(1...((#‘𝑅) +
1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = ((#‘𝑅) + 1)))) |
| 29 | 1 | ad3antrrr 766 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ ∀𝑖 ∈
(1...((#‘𝑅) +
1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → 𝑅 ∈ Fin) |
| 30 | 25 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ 𝑖 ∈
(1...((#‘𝑅) + 1)))
→ 𝑓:(1...𝑛)⟶𝑅) |
| 31 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ 𝑖 ∈
(1...((#‘𝑅) + 1)))
∧ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) |
| 32 | | cnvimass 5485 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ⊆ dom 𝑓 |
| 33 | 31, 32 | syl6ss 3615 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ 𝑖 ∈
(1...((#‘𝑅) + 1)))
∧ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ dom 𝑓) |
| 34 | 25 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ 𝑖 ∈
(1...((#‘𝑅) + 1)))
∧ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → 𝑓:(1...𝑛)⟶𝑅) |
| 35 | | fdm 6051 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓:(1...𝑛)⟶𝑅 → dom 𝑓 = (1...𝑛)) |
| 36 | 34, 35 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ 𝑖 ∈
(1...((#‘𝑅) + 1)))
∧ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → dom 𝑓 = (1...𝑛)) |
| 37 | 33, 36 | sseqtrd 3641 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ 𝑖 ∈
(1...((#‘𝑅) + 1)))
∧ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (1...𝑛)) |
| 38 | 22 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ 𝑖 ∈
(1...((#‘𝑅) + 1)))
→ 𝐾 ∈
ℕ) |
| 39 | | simplrl 800 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ 𝑖 ∈
(1...((#‘𝑅) + 1)))
→ 𝑎 ∈
ℕ) |
| 40 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
→ 𝑑 ∈ (ℕ
↑𝑚 (1...((#‘𝑅) + 1)))) |
| 41 | | nnex 11026 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ℕ
∈ V |
| 42 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(1...((#‘𝑅) +
1)) ∈ V |
| 43 | 41, 42 | elmap 7886 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑑 ∈ (ℕ
↑𝑚 (1...((#‘𝑅) + 1))) ↔ 𝑑:(1...((#‘𝑅) + 1))⟶ℕ) |
| 44 | 40, 43 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
→ 𝑑:(1...((#‘𝑅) + 1))⟶ℕ) |
| 45 | 44 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ 𝑖 ∈
(1...((#‘𝑅) + 1)))
→ (𝑑‘𝑖) ∈
ℕ) |
| 46 | 39, 45 | nnaddcld 11067 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ 𝑖 ∈
(1...((#‘𝑅) + 1)))
→ (𝑎 + (𝑑‘𝑖)) ∈ ℕ) |
| 47 | | vdwapid1 15679 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐾 ∈ ℕ ∧ (𝑎 + (𝑑‘𝑖)) ∈ ℕ ∧ (𝑑‘𝑖) ∈ ℕ) → (𝑎 + (𝑑‘𝑖)) ∈ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖))) |
| 48 | 38, 46, 45, 47 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ 𝑖 ∈
(1...((#‘𝑅) + 1)))
→ (𝑎 + (𝑑‘𝑖)) ∈ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖))) |
| 49 | 48 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ 𝑖 ∈
(1...((#‘𝑅) + 1)))
∧ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → (𝑎 + (𝑑‘𝑖)) ∈ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖))) |
| 50 | 37, 49 | sseldd 3604 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ 𝑖 ∈
(1...((#‘𝑅) + 1)))
∧ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → (𝑎 + (𝑑‘𝑖)) ∈ (1...𝑛)) |
| 51 | 50 | ex 450 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ 𝑖 ∈
(1...((#‘𝑅) + 1)))
→ (((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) → (𝑎 + (𝑑‘𝑖)) ∈ (1...𝑛))) |
| 52 | | ffvelrn 6357 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑛)⟶𝑅 ∧ (𝑎 + (𝑑‘𝑖)) ∈ (1...𝑛)) → (𝑓‘(𝑎 + (𝑑‘𝑖))) ∈ 𝑅) |
| 53 | 30, 51, 52 | syl6an 568 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ 𝑖 ∈
(1...((#‘𝑅) + 1)))
→ (((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) → (𝑓‘(𝑎 + (𝑑‘𝑖))) ∈ 𝑅)) |
| 54 | 53 | ralimdva 2962 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
→ (∀𝑖 ∈
(1...((#‘𝑅) +
1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) → ∀𝑖 ∈ (1...((#‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑‘𝑖))) ∈ 𝑅)) |
| 55 | 54 | imp 445 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ ∀𝑖 ∈
(1...((#‘𝑅) +
1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ∀𝑖 ∈ (1...((#‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑‘𝑖))) ∈ 𝑅) |
| 56 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) = (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) |
| 57 | 56 | fmpt 6381 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑖 ∈
(1...((#‘𝑅) +
1))(𝑓‘(𝑎 + (𝑑‘𝑖))) ∈ 𝑅 ↔ (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))):(1...((#‘𝑅) + 1))⟶𝑅) |
| 58 | 55, 57 | sylib 208 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ ∀𝑖 ∈
(1...((#‘𝑅) +
1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))):(1...((#‘𝑅) + 1))⟶𝑅) |
| 59 | | frn 6053 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))):(1...((#‘𝑅) + 1))⟶𝑅 → ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ⊆ 𝑅) |
| 60 | 58, 59 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ ∀𝑖 ∈
(1...((#‘𝑅) +
1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ⊆ 𝑅) |
| 61 | | ssdomg 8001 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Fin → (ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ⊆ 𝑅 → ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ≼ 𝑅)) |
| 62 | 29, 60, 61 | sylc 65 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ ∀𝑖 ∈
(1...((#‘𝑅) +
1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ≼ 𝑅) |
| 63 | | ssfi 8180 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Fin ∧ ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ⊆ 𝑅) → ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ∈ Fin) |
| 64 | 29, 60, 63 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ ∀𝑖 ∈
(1...((#‘𝑅) +
1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ∈ Fin) |
| 65 | | hashdom 13168 |
. . . . . . . . . . . . . 14
⊢ ((ran
(𝑖 ∈
(1...((#‘𝑅) + 1))
↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ∈ Fin ∧ 𝑅 ∈ Fin) → ((#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) ≤ (#‘𝑅) ↔ ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ≼ 𝑅)) |
| 66 | 64, 29, 65 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ ∀𝑖 ∈
(1...((#‘𝑅) +
1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ((#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) ≤ (#‘𝑅) ↔ ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ≼ 𝑅)) |
| 67 | 62, 66 | mpbird 247 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ ∀𝑖 ∈
(1...((#‘𝑅) +
1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → (#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) ≤ (#‘𝑅)) |
| 68 | | breq1 4656 |
. . . . . . . . . . . 12
⊢
((#‘ran (𝑖
∈ (1...((#‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = ((#‘𝑅) + 1) → ((#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) ≤ (#‘𝑅) ↔ ((#‘𝑅) + 1) ≤ (#‘𝑅))) |
| 69 | 67, 68 | syl5ibcom 235 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
∧ ∀𝑖 ∈
(1...((#‘𝑅) +
1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ((#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = ((#‘𝑅) + 1) → ((#‘𝑅) + 1) ≤ (#‘𝑅))) |
| 70 | 69 | expimpd 629 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) + 1)))))
→ ((∀𝑖 ∈
(1...((#‘𝑅) +
1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = ((#‘𝑅) + 1)) → ((#‘𝑅) + 1) ≤ (#‘𝑅))) |
| 71 | 70 | rexlimdvva 3038 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑𝑚
(1...((#‘𝑅) +
1)))(∀𝑖 ∈
(1...((#‘𝑅) +
1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = ((#‘𝑅) + 1)) → ((#‘𝑅) + 1) ≤ (#‘𝑅))) |
| 72 | 28, 71 | sylbid 230 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (〈((#‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 → ((#‘𝑅) + 1) ≤ (#‘𝑅))) |
| 73 | 20, 72 | mtod 189 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ¬ 〈((#‘𝑅) + 1), 𝐾〉 PolyAP 𝑓) |
| 74 | | biorf 420 |
. . . . . . 7
⊢ (¬
〈((#‘𝑅) + 1),
𝐾〉 PolyAP 𝑓 → ((𝐾 + 1) MonoAP 𝑓 ↔ (〈((#‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 75 | 73, 74 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ((𝐾 + 1) MonoAP 𝑓 ↔ (〈((#‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 76 | 75 | anassrs 680 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑓:(1...𝑛)⟶𝑅) → ((𝐾 + 1) MonoAP 𝑓 ↔ (〈((#‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 77 | 13, 76 | syldan 487 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))) → ((𝐾 + 1) MonoAP 𝑓 ↔ (〈((#‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 78 | 77 | ralbidva 2985 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))(𝐾 + 1) MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))(〈((#‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 79 | 78 | rexbidva 3049 |
. 2
⊢ (𝜑 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))(𝐾 + 1) MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))(〈((#‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 80 | 8, 79 | mpbird 247 |
1
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))(𝐾 + 1) MonoAP 𝑓) |