MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem13 Structured version   Visualization version   GIF version

Theorem vdwlem13 15697
Description: Lemma for vdw 15698. Main induction on 𝐾; 𝐾 = 0, 𝐾 = 1 base cases. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdw.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
vdwlem13 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓)
Distinct variable groups:   𝜑,𝑛,𝑓   𝑓,𝐾,𝑛   𝑅,𝑓,𝑛   𝜑,𝑓

Proof of Theorem vdwlem13
Dummy variables 𝑎 𝑐 𝑑 𝑔 𝑘 𝑚 𝑥 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn1uz2 11765 . . 3 (𝐾 ∈ ℕ ↔ (𝐾 = 1 ∨ 𝐾 ∈ (ℤ‘2)))
2 vdw.r . . . . . . . . . 10 (𝜑𝑅 ∈ Fin)
3 ovex 6678 . . . . . . . . . 10 (1...1) ∈ V
4 elmapg 7870 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ (1...1) ∈ V) → (𝑓 ∈ (𝑅𝑚 (1...1)) ↔ 𝑓:(1...1)⟶𝑅))
52, 3, 4sylancl 694 . . . . . . . . 9 (𝜑 → (𝑓 ∈ (𝑅𝑚 (1...1)) ↔ 𝑓:(1...1)⟶𝑅))
65biimpa 501 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑅𝑚 (1...1))) → 𝑓:(1...1)⟶𝑅)
7 1nn 11031 . . . . . . . . . 10 1 ∈ ℕ
8 vdwap1 15681 . . . . . . . . . 10 ((1 ∈ ℕ ∧ 1 ∈ ℕ) → (1(AP‘1)1) = {1})
97, 7, 8mp2an 708 . . . . . . . . 9 (1(AP‘1)1) = {1}
10 1z 11407 . . . . . . . . . . . 12 1 ∈ ℤ
11 elfz3 12351 . . . . . . . . . . . 12 (1 ∈ ℤ → 1 ∈ (1...1))
1210, 11mp1i 13 . . . . . . . . . . 11 ((𝜑𝑓:(1...1)⟶𝑅) → 1 ∈ (1...1))
13 eqidd 2623 . . . . . . . . . . 11 ((𝜑𝑓:(1...1)⟶𝑅) → (𝑓‘1) = (𝑓‘1))
14 ffn 6045 . . . . . . . . . . . . 13 (𝑓:(1...1)⟶𝑅𝑓 Fn (1...1))
1514adantl 482 . . . . . . . . . . . 12 ((𝜑𝑓:(1...1)⟶𝑅) → 𝑓 Fn (1...1))
16 fniniseg 6338 . . . . . . . . . . . 12 (𝑓 Fn (1...1) → (1 ∈ (𝑓 “ {(𝑓‘1)}) ↔ (1 ∈ (1...1) ∧ (𝑓‘1) = (𝑓‘1))))
1715, 16syl 17 . . . . . . . . . . 11 ((𝜑𝑓:(1...1)⟶𝑅) → (1 ∈ (𝑓 “ {(𝑓‘1)}) ↔ (1 ∈ (1...1) ∧ (𝑓‘1) = (𝑓‘1))))
1812, 13, 17mpbir2and 957 . . . . . . . . . 10 ((𝜑𝑓:(1...1)⟶𝑅) → 1 ∈ (𝑓 “ {(𝑓‘1)}))
1918snssd 4340 . . . . . . . . 9 ((𝜑𝑓:(1...1)⟶𝑅) → {1} ⊆ (𝑓 “ {(𝑓‘1)}))
209, 19syl5eqss 3649 . . . . . . . 8 ((𝜑𝑓:(1...1)⟶𝑅) → (1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)}))
216, 20syldan 487 . . . . . . 7 ((𝜑𝑓 ∈ (𝑅𝑚 (1...1))) → (1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)}))
2221ralrimiva 2966 . . . . . 6 (𝜑 → ∀𝑓 ∈ (𝑅𝑚 (1...1))(1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)}))
23 fveq2 6191 . . . . . . . . 9 (𝐾 = 1 → (AP‘𝐾) = (AP‘1))
2423oveqd 6667 . . . . . . . 8 (𝐾 = 1 → (1(AP‘𝐾)1) = (1(AP‘1)1))
2524sseq1d 3632 . . . . . . 7 (𝐾 = 1 → ((1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)})))
2625ralbidv 2986 . . . . . 6 (𝐾 = 1 → (∀𝑓 ∈ (𝑅𝑚 (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) ↔ ∀𝑓 ∈ (𝑅𝑚 (1...1))(1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)})))
2722, 26syl5ibrcom 237 . . . . 5 (𝜑 → (𝐾 = 1 → ∀𝑓 ∈ (𝑅𝑚 (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)})))
28 oveq1 6657 . . . . . . . . . . . 12 (𝑎 = 1 → (𝑎(AP‘𝐾)𝑑) = (1(AP‘𝐾)𝑑))
2928sseq1d 3632 . . . . . . . . . . 11 (𝑎 = 1 → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)})))
30 oveq2 6658 . . . . . . . . . . . 12 (𝑑 = 1 → (1(AP‘𝐾)𝑑) = (1(AP‘𝐾)1))
3130sseq1d 3632 . . . . . . . . . . 11 (𝑑 = 1 → ((1(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)})))
3229, 31rspc2ev 3324 . . . . . . . . . 10 ((1 ∈ ℕ ∧ 1 ∈ ℕ ∧ (1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}))
337, 7, 32mp3an12 1414 . . . . . . . . 9 ((1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}))
34 fvex 6201 . . . . . . . . . 10 (𝑓‘1) ∈ V
35 sneq 4187 . . . . . . . . . . . . 13 (𝑐 = (𝑓‘1) → {𝑐} = {(𝑓‘1)})
3635imaeq2d 5466 . . . . . . . . . . . 12 (𝑐 = (𝑓‘1) → (𝑓 “ {𝑐}) = (𝑓 “ {(𝑓‘1)}))
3736sseq2d 3633 . . . . . . . . . . 11 (𝑐 = (𝑓‘1) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐}) ↔ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)})))
38372rexbidv 3057 . . . . . . . . . 10 (𝑐 = (𝑓‘1) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)})))
3934, 38spcev 3300 . . . . . . . . 9 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐}))
4033, 39syl 17 . . . . . . . 8 ((1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐}))
41 vdw.k . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
4241adantr 481 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝑅𝑚 (1...1))) → 𝐾 ∈ ℕ0)
433, 42, 6vdwmc 15682 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑅𝑚 (1...1))) → (𝐾 MonoAP 𝑓 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐})))
4440, 43syl5ibr 236 . . . . . . 7 ((𝜑𝑓 ∈ (𝑅𝑚 (1...1))) → ((1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → 𝐾 MonoAP 𝑓))
4544ralimdva 2962 . . . . . 6 (𝜑 → (∀𝑓 ∈ (𝑅𝑚 (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → ∀𝑓 ∈ (𝑅𝑚 (1...1))𝐾 MonoAP 𝑓))
46 oveq2 6658 . . . . . . . . . 10 (𝑛 = 1 → (1...𝑛) = (1...1))
4746oveq2d 6666 . . . . . . . . 9 (𝑛 = 1 → (𝑅𝑚 (1...𝑛)) = (𝑅𝑚 (1...1)))
4847raleqdv 3144 . . . . . . . 8 (𝑛 = 1 → (∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅𝑚 (1...1))𝐾 MonoAP 𝑓))
4948rspcev 3309 . . . . . . 7 ((1 ∈ ℕ ∧ ∀𝑓 ∈ (𝑅𝑚 (1...1))𝐾 MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓)
507, 49mpan 706 . . . . . 6 (∀𝑓 ∈ (𝑅𝑚 (1...1))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓)
5145, 50syl6 35 . . . . 5 (𝜑 → (∀𝑓 ∈ (𝑅𝑚 (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓))
5227, 51syld 47 . . . 4 (𝜑 → (𝐾 = 1 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓))
53 breq1 4656 . . . . . . . 8 (𝑥 = 2 → (𝑥 MonoAP 𝑓 ↔ 2 MonoAP 𝑓))
5453rexralbidv 3058 . . . . . . 7 (𝑥 = 2 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))2 MonoAP 𝑓))
5554ralbidv 2986 . . . . . 6 (𝑥 = 2 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))2 MonoAP 𝑓))
56 breq1 4656 . . . . . . . 8 (𝑥 = 𝑘 → (𝑥 MonoAP 𝑓𝑘 MonoAP 𝑓))
5756rexralbidv 3058 . . . . . . 7 (𝑥 = 𝑘 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝑘 MonoAP 𝑓))
5857ralbidv 2986 . . . . . 6 (𝑥 = 𝑘 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝑘 MonoAP 𝑓))
59 breq1 4656 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝑥 MonoAP 𝑓 ↔ (𝑘 + 1) MonoAP 𝑓))
6059rexralbidv 3058 . . . . . . 7 (𝑥 = (𝑘 + 1) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
6160ralbidv 2986 . . . . . 6 (𝑥 = (𝑘 + 1) → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
62 breq1 4656 . . . . . . . 8 (𝑥 = 𝐾 → (𝑥 MonoAP 𝑓𝐾 MonoAP 𝑓))
6362rexralbidv 3058 . . . . . . 7 (𝑥 = 𝐾 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝐾 MonoAP 𝑓))
6463ralbidv 2986 . . . . . 6 (𝑥 = 𝐾 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝐾 MonoAP 𝑓))
65 hashcl 13147 . . . . . . . . . 10 (𝑟 ∈ Fin → (#‘𝑟) ∈ ℕ0)
66 nn0p1nn 11332 . . . . . . . . . 10 ((#‘𝑟) ∈ ℕ0 → ((#‘𝑟) + 1) ∈ ℕ)
6765, 66syl 17 . . . . . . . . 9 (𝑟 ∈ Fin → ((#‘𝑟) + 1) ∈ ℕ)
68 simpll 790 . . . . . . . . . . . 12 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟𝑚 (1...((#‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓) → 𝑟 ∈ Fin)
69 simplr 792 . . . . . . . . . . . . 13 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟𝑚 (1...((#‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓) → 𝑓 ∈ (𝑟𝑚 (1...((#‘𝑟) + 1))))
70 vex 3203 . . . . . . . . . . . . . 14 𝑟 ∈ V
71 ovex 6678 . . . . . . . . . . . . . 14 (1...((#‘𝑟) + 1)) ∈ V
7270, 71elmap 7886 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑟𝑚 (1...((#‘𝑟) + 1))) ↔ 𝑓:(1...((#‘𝑟) + 1))⟶𝑟)
7369, 72sylib 208 . . . . . . . . . . . 12 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟𝑚 (1...((#‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓) → 𝑓:(1...((#‘𝑟) + 1))⟶𝑟)
74 simpr 477 . . . . . . . . . . . 12 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟𝑚 (1...((#‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓) → ¬ 2 MonoAP 𝑓)
7568, 73, 74vdwlem12 15696 . . . . . . . . . . 11 ¬ ((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟𝑚 (1...((#‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓)
76 iman 440 . . . . . . . . . . 11 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟𝑚 (1...((#‘𝑟) + 1)))) → 2 MonoAP 𝑓) ↔ ¬ ((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟𝑚 (1...((#‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓))
7775, 76mpbir 221 . . . . . . . . . 10 ((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟𝑚 (1...((#‘𝑟) + 1)))) → 2 MonoAP 𝑓)
7877ralrimiva 2966 . . . . . . . . 9 (𝑟 ∈ Fin → ∀𝑓 ∈ (𝑟𝑚 (1...((#‘𝑟) + 1)))2 MonoAP 𝑓)
79 oveq2 6658 . . . . . . . . . . . 12 (𝑛 = ((#‘𝑟) + 1) → (1...𝑛) = (1...((#‘𝑟) + 1)))
8079oveq2d 6666 . . . . . . . . . . 11 (𝑛 = ((#‘𝑟) + 1) → (𝑟𝑚 (1...𝑛)) = (𝑟𝑚 (1...((#‘𝑟) + 1))))
8180raleqdv 3144 . . . . . . . . . 10 (𝑛 = ((#‘𝑟) + 1) → (∀𝑓 ∈ (𝑟𝑚 (1...𝑛))2 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑟𝑚 (1...((#‘𝑟) + 1)))2 MonoAP 𝑓))
8281rspcev 3309 . . . . . . . . 9 ((((#‘𝑟) + 1) ∈ ℕ ∧ ∀𝑓 ∈ (𝑟𝑚 (1...((#‘𝑟) + 1)))2 MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))2 MonoAP 𝑓)
8367, 78, 82syl2anc 693 . . . . . . . 8 (𝑟 ∈ Fin → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))2 MonoAP 𝑓)
8483rgen 2922 . . . . . . 7 𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))2 MonoAP 𝑓
8584a1i 11 . . . . . 6 (2 ∈ ℤ → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))2 MonoAP 𝑓)
86 oveq1 6657 . . . . . . . . . . 11 (𝑟 = 𝑠 → (𝑟𝑚 (1...𝑛)) = (𝑠𝑚 (1...𝑛)))
8786raleqdv 3144 . . . . . . . . . 10 (𝑟 = 𝑠 → (∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝑘 MonoAP 𝑓))
8887rexbidv 3052 . . . . . . . . 9 (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝑘 MonoAP 𝑓))
89 oveq2 6658 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (1...𝑛) = (1...𝑚))
9089oveq2d 6666 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝑠𝑚 (1...𝑛)) = (𝑠𝑚 (1...𝑚)))
9190raleqdv 3144 . . . . . . . . . . 11 (𝑛 = 𝑚 → (∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑠𝑚 (1...𝑚))𝑘 MonoAP 𝑓))
92 breq2 4657 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑘 MonoAP 𝑓𝑘 MonoAP 𝑔))
9392cbvralv 3171 . . . . . . . . . . 11 (∀𝑓 ∈ (𝑠𝑚 (1...𝑚))𝑘 MonoAP 𝑓 ↔ ∀𝑔 ∈ (𝑠𝑚 (1...𝑚))𝑘 MonoAP 𝑔)
9491, 93syl6bb 276 . . . . . . . . . 10 (𝑛 = 𝑚 → (∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑔 ∈ (𝑠𝑚 (1...𝑚))𝑘 MonoAP 𝑔))
9594cbvrexv 3172 . . . . . . . . 9 (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠𝑚 (1...𝑚))𝑘 MonoAP 𝑔)
9688, 95syl6bb 276 . . . . . . . 8 (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠𝑚 (1...𝑚))𝑘 MonoAP 𝑔))
9796cbvralv 3171 . . . . . . 7 (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠𝑚 (1...𝑚))𝑘 MonoAP 𝑔)
98 simplr 792 . . . . . . . . . 10 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠𝑚 (1...𝑚))𝑘 MonoAP 𝑔) → 𝑟 ∈ Fin)
99 simpll 790 . . . . . . . . . 10 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠𝑚 (1...𝑚))𝑘 MonoAP 𝑔) → 𝑘 ∈ (ℤ‘2))
100 simpr 477 . . . . . . . . . . 11 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠𝑚 (1...𝑚))𝑘 MonoAP 𝑔) → ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠𝑚 (1...𝑚))𝑘 MonoAP 𝑔)
10195ralbii 2980 . . . . . . . . . . 11 (∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠𝑚 (1...𝑚))𝑘 MonoAP 𝑔)
102100, 101sylibr 224 . . . . . . . . . 10 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠𝑚 (1...𝑚))𝑘 MonoAP 𝑔) → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝑘 MonoAP 𝑓)
10398, 99, 102vdwlem11 15695 . . . . . . . . 9 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠𝑚 (1...𝑚))𝑘 MonoAP 𝑔) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))(𝑘 + 1) MonoAP 𝑓)
104103ex 450 . . . . . . . 8 ((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) → (∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠𝑚 (1...𝑚))𝑘 MonoAP 𝑔 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
105104ralrimdva 2969 . . . . . . 7 (𝑘 ∈ (ℤ‘2) → (∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠𝑚 (1...𝑚))𝑘 MonoAP 𝑔 → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
10697, 105syl5bi 232 . . . . . 6 (𝑘 ∈ (ℤ‘2) → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝑘 MonoAP 𝑓 → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
10755, 58, 61, 64, 85, 106uzind4 11746 . . . . 5 (𝐾 ∈ (ℤ‘2) → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝐾 MonoAP 𝑓)
108 oveq1 6657 . . . . . . . 8 (𝑟 = 𝑅 → (𝑟𝑚 (1...𝑛)) = (𝑅𝑚 (1...𝑛)))
109108raleqdv 3144 . . . . . . 7 (𝑟 = 𝑅 → (∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓))
110109rexbidv 3052 . . . . . 6 (𝑟 = 𝑅 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓))
111110rspcv 3305 . . . . 5 (𝑅 ∈ Fin → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟𝑚 (1...𝑛))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓))
1122, 107, 111syl2im 40 . . . 4 (𝜑 → (𝐾 ∈ (ℤ‘2) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓))
11352, 112jaod 395 . . 3 (𝜑 → ((𝐾 = 1 ∨ 𝐾 ∈ (ℤ‘2)) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓))
1141, 113syl5bi 232 . 2 (𝜑 → (𝐾 ∈ ℕ → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓))
115 fveq2 6191 . . . . . . 7 (𝐾 = 0 → (AP‘𝐾) = (AP‘0))
116115oveqd 6667 . . . . . 6 (𝐾 = 0 → (1(AP‘𝐾)1) = (1(AP‘0)1))
117 vdwap0 15680 . . . . . . 7 ((1 ∈ ℕ ∧ 1 ∈ ℕ) → (1(AP‘0)1) = ∅)
1187, 7, 117mp2an 708 . . . . . 6 (1(AP‘0)1) = ∅
119116, 118syl6eq 2672 . . . . 5 (𝐾 = 0 → (1(AP‘𝐾)1) = ∅)
120 0ss 3972 . . . . 5 ∅ ⊆ (𝑓 “ {(𝑓‘1)})
121119, 120syl6eqss 3655 . . . 4 (𝐾 = 0 → (1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}))
122121ralrimivw 2967 . . 3 (𝐾 = 0 → ∀𝑓 ∈ (𝑅𝑚 (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}))
123122, 51syl5 34 . 2 (𝜑 → (𝐾 = 0 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓))
124 elnn0 11294 . . 3 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
12541, 124sylib 208 . 2 (𝜑 → (𝐾 ∈ ℕ ∨ 𝐾 = 0))
126114, 123, 125mpjaod 396 1 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574  c0 3915  {csn 4177   class class class wbr 4653  ccnv 5113  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  0cc0 9936  1c1 9937   + caddc 9939  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  #chash 13117  APcvdwa 15669   MonoAP cvdwm 15670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-hash 13118  df-vdwap 15672  df-vdwmc 15673  df-vdwpc 15674
This theorem is referenced by:  vdw  15698
  Copyright terms: Public domain W3C validator