| Step | Hyp | Ref
| Expression |
| 1 | | elnn1uz2 11765 |
. . 3
⊢ (𝐾 ∈ ℕ ↔ (𝐾 = 1 ∨ 𝐾 ∈
(ℤ≥‘2))) |
| 2 | | vdw.r |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Fin) |
| 3 | | ovex 6678 |
. . . . . . . . . 10
⊢ (1...1)
∈ V |
| 4 | | elmapg 7870 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Fin ∧ (1...1) ∈
V) → (𝑓 ∈ (𝑅 ↑𝑚
(1...1)) ↔ 𝑓:(1...1)⟶𝑅)) |
| 5 | 2, 3, 4 | sylancl 694 |
. . . . . . . . 9
⊢ (𝜑 → (𝑓 ∈ (𝑅 ↑𝑚 (1...1)) ↔
𝑓:(1...1)⟶𝑅)) |
| 6 | 5 | biimpa 501 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑅 ↑𝑚 (1...1))) →
𝑓:(1...1)⟶𝑅) |
| 7 | | 1nn 11031 |
. . . . . . . . . 10
⊢ 1 ∈
ℕ |
| 8 | | vdwap1 15681 |
. . . . . . . . . 10
⊢ ((1
∈ ℕ ∧ 1 ∈ ℕ) → (1(AP‘1)1) =
{1}) |
| 9 | 7, 7, 8 | mp2an 708 |
. . . . . . . . 9
⊢
(1(AP‘1)1) = {1} |
| 10 | | 1z 11407 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℤ |
| 11 | | elfz3 12351 |
. . . . . . . . . . . 12
⊢ (1 ∈
ℤ → 1 ∈ (1...1)) |
| 12 | 10, 11 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → 1 ∈ (1...1)) |
| 13 | | eqidd 2623 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → (𝑓‘1) = (𝑓‘1)) |
| 14 | | ffn 6045 |
. . . . . . . . . . . . 13
⊢ (𝑓:(1...1)⟶𝑅 → 𝑓 Fn (1...1)) |
| 15 | 14 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → 𝑓 Fn (1...1)) |
| 16 | | fniniseg 6338 |
. . . . . . . . . . . 12
⊢ (𝑓 Fn (1...1) → (1 ∈
(◡𝑓 “ {(𝑓‘1)}) ↔ (1 ∈ (1...1) ∧
(𝑓‘1) = (𝑓‘1)))) |
| 17 | 15, 16 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → (1 ∈ (◡𝑓 “ {(𝑓‘1)}) ↔ (1 ∈ (1...1) ∧
(𝑓‘1) = (𝑓‘1)))) |
| 18 | 12, 13, 17 | mpbir2and 957 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → 1 ∈ (◡𝑓 “ {(𝑓‘1)})) |
| 19 | 18 | snssd 4340 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → {1} ⊆ (◡𝑓 “ {(𝑓‘1)})) |
| 20 | 9, 19 | syl5eqss 3649 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → (1(AP‘1)1) ⊆ (◡𝑓 “ {(𝑓‘1)})) |
| 21 | 6, 20 | syldan 487 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑅 ↑𝑚 (1...1))) →
(1(AP‘1)1) ⊆ (◡𝑓 “ {(𝑓‘1)})) |
| 22 | 21 | ralrimiva 2966 |
. . . . . 6
⊢ (𝜑 → ∀𝑓 ∈ (𝑅 ↑𝑚
(1...1))(1(AP‘1)1) ⊆ (◡𝑓 “ {(𝑓‘1)})) |
| 23 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝐾 = 1 → (AP‘𝐾) =
(AP‘1)) |
| 24 | 23 | oveqd 6667 |
. . . . . . . 8
⊢ (𝐾 = 1 → (1(AP‘𝐾)1) =
(1(AP‘1)1)) |
| 25 | 24 | sseq1d 3632 |
. . . . . . 7
⊢ (𝐾 = 1 → ((1(AP‘𝐾)1) ⊆ (◡𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘1)1) ⊆
(◡𝑓 “ {(𝑓‘1)}))) |
| 26 | 25 | ralbidv 2986 |
. . . . . 6
⊢ (𝐾 = 1 → (∀𝑓 ∈ (𝑅 ↑𝑚
(1...1))(1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)}) ↔ ∀𝑓 ∈ (𝑅 ↑𝑚
(1...1))(1(AP‘1)1) ⊆ (◡𝑓 “ {(𝑓‘1)}))) |
| 27 | 22, 26 | syl5ibrcom 237 |
. . . . 5
⊢ (𝜑 → (𝐾 = 1 → ∀𝑓 ∈ (𝑅 ↑𝑚
(1...1))(1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)}))) |
| 28 | | oveq1 6657 |
. . . . . . . . . . . 12
⊢ (𝑎 = 1 → (𝑎(AP‘𝐾)𝑑) = (1(AP‘𝐾)𝑑)) |
| 29 | 28 | sseq1d 3632 |
. . . . . . . . . . 11
⊢ (𝑎 = 1 → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)}))) |
| 30 | | oveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑑 = 1 → (1(AP‘𝐾)𝑑) = (1(AP‘𝐾)1)) |
| 31 | 30 | sseq1d 3632 |
. . . . . . . . . . 11
⊢ (𝑑 = 1 → ((1(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘𝐾)1) ⊆ (◡𝑓 “ {(𝑓‘1)}))) |
| 32 | 29, 31 | rspc2ev 3324 |
. . . . . . . . . 10
⊢ ((1
∈ ℕ ∧ 1 ∈ ℕ ∧ (1(AP‘𝐾)1) ⊆ (◡𝑓 “ {(𝑓‘1)})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)})) |
| 33 | 7, 7, 32 | mp3an12 1414 |
. . . . . . . . 9
⊢
((1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)}) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)})) |
| 34 | | fvex 6201 |
. . . . . . . . . 10
⊢ (𝑓‘1) ∈
V |
| 35 | | sneq 4187 |
. . . . . . . . . . . . 13
⊢ (𝑐 = (𝑓‘1) → {𝑐} = {(𝑓‘1)}) |
| 36 | 35 | imaeq2d 5466 |
. . . . . . . . . . . 12
⊢ (𝑐 = (𝑓‘1) → (◡𝑓 “ {𝑐}) = (◡𝑓 “ {(𝑓‘1)})) |
| 37 | 36 | sseq2d 3633 |
. . . . . . . . . . 11
⊢ (𝑐 = (𝑓‘1) → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {𝑐}) ↔ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)}))) |
| 38 | 37 | 2rexbidv 3057 |
. . . . . . . . . 10
⊢ (𝑐 = (𝑓‘1) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)}))) |
| 39 | 34, 38 | spcev 3300 |
. . . . . . . . 9
⊢
(∃𝑎 ∈
ℕ ∃𝑑 ∈
ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)}) → ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {𝑐})) |
| 40 | 33, 39 | syl 17 |
. . . . . . . 8
⊢
((1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)}) → ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {𝑐})) |
| 41 | | vdw.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 42 | 41 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑅 ↑𝑚 (1...1))) →
𝐾 ∈
ℕ0) |
| 43 | 3, 42, 6 | vdwmc 15682 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑅 ↑𝑚 (1...1))) →
(𝐾 MonoAP 𝑓 ↔ ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {𝑐}))) |
| 44 | 40, 43 | syl5ibr 236 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑅 ↑𝑚 (1...1))) →
((1(AP‘𝐾)1) ⊆
(◡𝑓 “ {(𝑓‘1)}) → 𝐾 MonoAP 𝑓)) |
| 45 | 44 | ralimdva 2962 |
. . . . . 6
⊢ (𝜑 → (∀𝑓 ∈ (𝑅 ↑𝑚
(1...1))(1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)}) → ∀𝑓 ∈ (𝑅 ↑𝑚 (1...1))𝐾 MonoAP 𝑓)) |
| 46 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → (1...𝑛) = (1...1)) |
| 47 | 46 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑛 = 1 → (𝑅 ↑𝑚 (1...𝑛)) = (𝑅 ↑𝑚
(1...1))) |
| 48 | 47 | raleqdv 3144 |
. . . . . . . 8
⊢ (𝑛 = 1 → (∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...1))𝐾 MonoAP 𝑓)) |
| 49 | 48 | rspcev 3309 |
. . . . . . 7
⊢ ((1
∈ ℕ ∧ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...1))𝐾 MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓) |
| 50 | 7, 49 | mpan 706 |
. . . . . 6
⊢
(∀𝑓 ∈
(𝑅
↑𝑚 (1...1))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓) |
| 51 | 45, 50 | syl6 35 |
. . . . 5
⊢ (𝜑 → (∀𝑓 ∈ (𝑅 ↑𝑚
(1...1))(1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)}) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓)) |
| 52 | 27, 51 | syld 47 |
. . . 4
⊢ (𝜑 → (𝐾 = 1 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓)) |
| 53 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑥 = 2 → (𝑥 MonoAP 𝑓 ↔ 2 MonoAP 𝑓)) |
| 54 | 53 | rexralbidv 3058 |
. . . . . . 7
⊢ (𝑥 = 2 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))2 MonoAP 𝑓)) |
| 55 | 54 | ralbidv 2986 |
. . . . . 6
⊢ (𝑥 = 2 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))2 MonoAP 𝑓)) |
| 56 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑥 = 𝑘 → (𝑥 MonoAP 𝑓 ↔ 𝑘 MonoAP 𝑓)) |
| 57 | 56 | rexralbidv 3058 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))𝑘 MonoAP 𝑓)) |
| 58 | 57 | ralbidv 2986 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))𝑘 MonoAP 𝑓)) |
| 59 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑥 = (𝑘 + 1) → (𝑥 MonoAP 𝑓 ↔ (𝑘 + 1) MonoAP 𝑓)) |
| 60 | 59 | rexralbidv 3058 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))(𝑘 + 1) MonoAP 𝑓)) |
| 61 | 60 | ralbidv 2986 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))(𝑘 + 1) MonoAP 𝑓)) |
| 62 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑥 = 𝐾 → (𝑥 MonoAP 𝑓 ↔ 𝐾 MonoAP 𝑓)) |
| 63 | 62 | rexralbidv 3058 |
. . . . . . 7
⊢ (𝑥 = 𝐾 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓)) |
| 64 | 63 | ralbidv 2986 |
. . . . . 6
⊢ (𝑥 = 𝐾 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓)) |
| 65 | | hashcl 13147 |
. . . . . . . . . 10
⊢ (𝑟 ∈ Fin →
(#‘𝑟) ∈
ℕ0) |
| 66 | | nn0p1nn 11332 |
. . . . . . . . . 10
⊢
((#‘𝑟) ∈
ℕ0 → ((#‘𝑟) + 1) ∈ ℕ) |
| 67 | 65, 66 | syl 17 |
. . . . . . . . 9
⊢ (𝑟 ∈ Fin →
((#‘𝑟) + 1) ∈
ℕ) |
| 68 | | simpll 790 |
. . . . . . . . . . . 12
⊢ (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑𝑚
(1...((#‘𝑟) + 1))))
∧ ¬ 2 MonoAP 𝑓)
→ 𝑟 ∈
Fin) |
| 69 | | simplr 792 |
. . . . . . . . . . . . 13
⊢ (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑𝑚
(1...((#‘𝑟) + 1))))
∧ ¬ 2 MonoAP 𝑓)
→ 𝑓 ∈ (𝑟 ↑𝑚
(1...((#‘𝑟) +
1)))) |
| 70 | | vex 3203 |
. . . . . . . . . . . . . 14
⊢ 𝑟 ∈ V |
| 71 | | ovex 6678 |
. . . . . . . . . . . . . 14
⊢
(1...((#‘𝑟) +
1)) ∈ V |
| 72 | 70, 71 | elmap 7886 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝑟 ↑𝑚
(1...((#‘𝑟) + 1)))
↔ 𝑓:(1...((#‘𝑟) + 1))⟶𝑟) |
| 73 | 69, 72 | sylib 208 |
. . . . . . . . . . . 12
⊢ (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑𝑚
(1...((#‘𝑟) + 1))))
∧ ¬ 2 MonoAP 𝑓)
→ 𝑓:(1...((#‘𝑟) + 1))⟶𝑟) |
| 74 | | simpr 477 |
. . . . . . . . . . . 12
⊢ (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑𝑚
(1...((#‘𝑟) + 1))))
∧ ¬ 2 MonoAP 𝑓)
→ ¬ 2 MonoAP 𝑓) |
| 75 | 68, 73, 74 | vdwlem12 15696 |
. . . . . . . . . . 11
⊢ ¬
((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑𝑚
(1...((#‘𝑟) + 1))))
∧ ¬ 2 MonoAP 𝑓) |
| 76 | | iman 440 |
. . . . . . . . . . 11
⊢ (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑𝑚
(1...((#‘𝑟) + 1))))
→ 2 MonoAP 𝑓) ↔
¬ ((𝑟 ∈ Fin ∧
𝑓 ∈ (𝑟 ↑𝑚
(1...((#‘𝑟) + 1))))
∧ ¬ 2 MonoAP 𝑓)) |
| 77 | 75, 76 | mpbir 221 |
. . . . . . . . . 10
⊢ ((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑𝑚
(1...((#‘𝑟) + 1))))
→ 2 MonoAP 𝑓) |
| 78 | 77 | ralrimiva 2966 |
. . . . . . . . 9
⊢ (𝑟 ∈ Fin → ∀𝑓 ∈ (𝑟 ↑𝑚
(1...((#‘𝑟) + 1)))2
MonoAP 𝑓) |
| 79 | | oveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑛 = ((#‘𝑟) + 1) → (1...𝑛) = (1...((#‘𝑟) + 1))) |
| 80 | 79 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝑛 = ((#‘𝑟) + 1) → (𝑟 ↑𝑚 (1...𝑛)) = (𝑟 ↑𝑚
(1...((#‘𝑟) +
1)))) |
| 81 | 80 | raleqdv 3144 |
. . . . . . . . . 10
⊢ (𝑛 = ((#‘𝑟) + 1) → (∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))2 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑟 ↑𝑚
(1...((#‘𝑟) + 1)))2
MonoAP 𝑓)) |
| 82 | 81 | rspcev 3309 |
. . . . . . . . 9
⊢
((((#‘𝑟) + 1)
∈ ℕ ∧ ∀𝑓 ∈ (𝑟 ↑𝑚
(1...((#‘𝑟) + 1)))2
MonoAP 𝑓) →
∃𝑛 ∈ ℕ
∀𝑓 ∈ (𝑟 ↑𝑚
(1...𝑛))2 MonoAP 𝑓) |
| 83 | 67, 78, 82 | syl2anc 693 |
. . . . . . . 8
⊢ (𝑟 ∈ Fin → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))2 MonoAP 𝑓) |
| 84 | 83 | rgen 2922 |
. . . . . . 7
⊢
∀𝑟 ∈ Fin
∃𝑛 ∈ ℕ
∀𝑓 ∈ (𝑟 ↑𝑚
(1...𝑛))2 MonoAP 𝑓 |
| 85 | 84 | a1i 11 |
. . . . . 6
⊢ (2 ∈
ℤ → ∀𝑟
∈ Fin ∃𝑛 ∈
ℕ ∀𝑓 ∈
(𝑟
↑𝑚 (1...𝑛))2 MonoAP 𝑓) |
| 86 | | oveq1 6657 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑠 → (𝑟 ↑𝑚 (1...𝑛)) = (𝑠 ↑𝑚 (1...𝑛))) |
| 87 | 86 | raleqdv 3144 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑠 → (∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑠 ↑𝑚 (1...𝑛))𝑘 MonoAP 𝑓)) |
| 88 | 87 | rexbidv 3052 |
. . . . . . . . 9
⊢ (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑𝑚 (1...𝑛))𝑘 MonoAP 𝑓)) |
| 89 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → (1...𝑛) = (1...𝑚)) |
| 90 | 89 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → (𝑠 ↑𝑚 (1...𝑛)) = (𝑠 ↑𝑚 (1...𝑚))) |
| 91 | 90 | raleqdv 3144 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → (∀𝑓 ∈ (𝑠 ↑𝑚 (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑠 ↑𝑚 (1...𝑚))𝑘 MonoAP 𝑓)) |
| 92 | | breq2 4657 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (𝑘 MonoAP 𝑓 ↔ 𝑘 MonoAP 𝑔)) |
| 93 | 92 | cbvralv 3171 |
. . . . . . . . . . 11
⊢
(∀𝑓 ∈
(𝑠
↑𝑚 (1...𝑚))𝑘 MonoAP 𝑓 ↔ ∀𝑔 ∈ (𝑠 ↑𝑚 (1...𝑚))𝑘 MonoAP 𝑔) |
| 94 | 91, 93 | syl6bb 276 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (∀𝑓 ∈ (𝑠 ↑𝑚 (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑔 ∈ (𝑠 ↑𝑚 (1...𝑚))𝑘 MonoAP 𝑔)) |
| 95 | 94 | cbvrexv 3172 |
. . . . . . . . 9
⊢
(∃𝑛 ∈
ℕ ∀𝑓 ∈
(𝑠
↑𝑚 (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑𝑚 (1...𝑚))𝑘 MonoAP 𝑔) |
| 96 | 88, 95 | syl6bb 276 |
. . . . . . . 8
⊢ (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑𝑚 (1...𝑚))𝑘 MonoAP 𝑔)) |
| 97 | 96 | cbvralv 3171 |
. . . . . . 7
⊢
(∀𝑟 ∈
Fin ∃𝑛 ∈ ℕ
∀𝑓 ∈ (𝑟 ↑𝑚
(1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑𝑚 (1...𝑚))𝑘 MonoAP 𝑔) |
| 98 | | simplr 792 |
. . . . . . . . . 10
⊢ (((𝑘 ∈
(ℤ≥‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑𝑚 (1...𝑚))𝑘 MonoAP 𝑔) → 𝑟 ∈ Fin) |
| 99 | | simpll 790 |
. . . . . . . . . 10
⊢ (((𝑘 ∈
(ℤ≥‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑𝑚 (1...𝑚))𝑘 MonoAP 𝑔) → 𝑘 ∈
(ℤ≥‘2)) |
| 100 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈
(ℤ≥‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑𝑚 (1...𝑚))𝑘 MonoAP 𝑔) → ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑𝑚 (1...𝑚))𝑘 MonoAP 𝑔) |
| 101 | 95 | ralbii 2980 |
. . . . . . . . . . 11
⊢
(∀𝑠 ∈
Fin ∃𝑛 ∈ ℕ
∀𝑓 ∈ (𝑠 ↑𝑚
(1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑𝑚 (1...𝑚))𝑘 MonoAP 𝑔) |
| 102 | 100, 101 | sylibr 224 |
. . . . . . . . . 10
⊢ (((𝑘 ∈
(ℤ≥‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑𝑚 (1...𝑚))𝑘 MonoAP 𝑔) → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑𝑚 (1...𝑛))𝑘 MonoAP 𝑓) |
| 103 | 98, 99, 102 | vdwlem11 15695 |
. . . . . . . . 9
⊢ (((𝑘 ∈
(ℤ≥‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑𝑚 (1...𝑚))𝑘 MonoAP 𝑔) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))(𝑘 + 1) MonoAP 𝑓) |
| 104 | 103 | ex 450 |
. . . . . . . 8
⊢ ((𝑘 ∈
(ℤ≥‘2) ∧ 𝑟 ∈ Fin) → (∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑𝑚 (1...𝑚))𝑘 MonoAP 𝑔 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))(𝑘 + 1) MonoAP 𝑓)) |
| 105 | 104 | ralrimdva 2969 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘2) → (∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑𝑚 (1...𝑚))𝑘 MonoAP 𝑔 → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))(𝑘 + 1) MonoAP 𝑓)) |
| 106 | 97, 105 | syl5bi 232 |
. . . . . 6
⊢ (𝑘 ∈
(ℤ≥‘2) → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))𝑘 MonoAP 𝑓 → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))(𝑘 + 1) MonoAP 𝑓)) |
| 107 | 55, 58, 61, 64, 85, 106 | uzind4 11746 |
. . . . 5
⊢ (𝐾 ∈
(ℤ≥‘2) → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓) |
| 108 | | oveq1 6657 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (𝑟 ↑𝑚 (1...𝑛)) = (𝑅 ↑𝑚 (1...𝑛))) |
| 109 | 108 | raleqdv 3144 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓)) |
| 110 | 109 | rexbidv 3052 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓)) |
| 111 | 110 | rspcv 3305 |
. . . . 5
⊢ (𝑅 ∈ Fin →
(∀𝑟 ∈ Fin
∃𝑛 ∈ ℕ
∀𝑓 ∈ (𝑟 ↑𝑚
(1...𝑛))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓)) |
| 112 | 2, 107, 111 | syl2im 40 |
. . . 4
⊢ (𝜑 → (𝐾 ∈ (ℤ≥‘2)
→ ∃𝑛 ∈
ℕ ∀𝑓 ∈
(𝑅
↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓)) |
| 113 | 52, 112 | jaod 395 |
. . 3
⊢ (𝜑 → ((𝐾 = 1 ∨ 𝐾 ∈ (ℤ≥‘2))
→ ∃𝑛 ∈
ℕ ∀𝑓 ∈
(𝑅
↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓)) |
| 114 | 1, 113 | syl5bi 232 |
. 2
⊢ (𝜑 → (𝐾 ∈ ℕ → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓)) |
| 115 | | fveq2 6191 |
. . . . . . 7
⊢ (𝐾 = 0 → (AP‘𝐾) =
(AP‘0)) |
| 116 | 115 | oveqd 6667 |
. . . . . 6
⊢ (𝐾 = 0 → (1(AP‘𝐾)1) =
(1(AP‘0)1)) |
| 117 | | vdwap0 15680 |
. . . . . . 7
⊢ ((1
∈ ℕ ∧ 1 ∈ ℕ) → (1(AP‘0)1) =
∅) |
| 118 | 7, 7, 117 | mp2an 708 |
. . . . . 6
⊢
(1(AP‘0)1) = ∅ |
| 119 | 116, 118 | syl6eq 2672 |
. . . . 5
⊢ (𝐾 = 0 → (1(AP‘𝐾)1) = ∅) |
| 120 | | 0ss 3972 |
. . . . 5
⊢ ∅
⊆ (◡𝑓 “ {(𝑓‘1)}) |
| 121 | 119, 120 | syl6eqss 3655 |
. . . 4
⊢ (𝐾 = 0 → (1(AP‘𝐾)1) ⊆ (◡𝑓 “ {(𝑓‘1)})) |
| 122 | 121 | ralrimivw 2967 |
. . 3
⊢ (𝐾 = 0 → ∀𝑓 ∈ (𝑅 ↑𝑚
(1...1))(1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)})) |
| 123 | 122, 51 | syl5 34 |
. 2
⊢ (𝜑 → (𝐾 = 0 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓)) |
| 124 | | elnn0 11294 |
. . 3
⊢ (𝐾 ∈ ℕ0
↔ (𝐾 ∈ ℕ
∨ 𝐾 =
0)) |
| 125 | 41, 124 | sylib 208 |
. 2
⊢ (𝜑 → (𝐾 ∈ ℕ ∨ 𝐾 = 0)) |
| 126 | 114, 123,
125 | mpjaod 396 |
1
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓) |