![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vrgpf | Structured version Visualization version GIF version |
Description: The mapping from the index set to the generators is a function into the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
vrgpfval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
vrgpfval.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
vrgpf.m | ⊢ 𝐺 = (freeGrp‘𝐼) |
vrgpf.x | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
vrgpf | ⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4790 | . . . . . . . . . 10 ⊢ ∅ ∈ V | |
2 | 1 | prid1 4297 | . . . . . . . . 9 ⊢ ∅ ∈ {∅, 1𝑜} |
3 | df2o3 7573 | . . . . . . . . 9 ⊢ 2𝑜 = {∅, 1𝑜} | |
4 | 2, 3 | eleqtrri 2700 | . . . . . . . 8 ⊢ ∅ ∈ 2𝑜 |
5 | opelxpi 5148 | . . . . . . . 8 ⊢ ((𝑗 ∈ 𝐼 ∧ ∅ ∈ 2𝑜) → 〈𝑗, ∅〉 ∈ (𝐼 × 2𝑜)) | |
6 | 4, 5 | mpan2 707 | . . . . . . 7 ⊢ (𝑗 ∈ 𝐼 → 〈𝑗, ∅〉 ∈ (𝐼 × 2𝑜)) |
7 | 6 | adantl 482 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → 〈𝑗, ∅〉 ∈ (𝐼 × 2𝑜)) |
8 | 7 | s1cld 13383 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → 〈“〈𝑗, ∅〉”〉 ∈ Word (𝐼 × 2𝑜)) |
9 | 2on 7568 | . . . . . . . 8 ⊢ 2𝑜 ∈ On | |
10 | xpexg 6960 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 2𝑜 ∈ On) → (𝐼 × 2𝑜) ∈ V) | |
11 | 9, 10 | mpan2 707 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × 2𝑜) ∈ V) |
12 | 11 | adantr 481 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → (𝐼 × 2𝑜) ∈ V) |
13 | wrdexg 13315 | . . . . . 6 ⊢ ((𝐼 × 2𝑜) ∈ V → Word (𝐼 × 2𝑜) ∈ V) | |
14 | fvi 6255 | . . . . . 6 ⊢ (Word (𝐼 × 2𝑜) ∈ V → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜)) | |
15 | 12, 13, 14 | 3syl 18 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜)) |
16 | 8, 15 | eleqtrrd 2704 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → 〈“〈𝑗, ∅〉”〉 ∈ ( I ‘Word (𝐼 × 2𝑜))) |
17 | vrgpf.m | . . . . 5 ⊢ 𝐺 = (freeGrp‘𝐼) | |
18 | vrgpfval.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
19 | eqid 2622 | . . . . 5 ⊢ ( I ‘Word (𝐼 × 2𝑜)) = ( I ‘Word (𝐼 × 2𝑜)) | |
20 | vrgpf.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
21 | 17, 18, 19, 20 | frgpeccl 18174 | . . . 4 ⊢ (〈“〈𝑗, ∅〉”〉 ∈ ( I ‘Word (𝐼 × 2𝑜)) → [〈“〈𝑗, ∅〉”〉] ∼ ∈ 𝑋) |
22 | 16, 21 | syl 17 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → [〈“〈𝑗, ∅〉”〉] ∼ ∈ 𝑋) |
23 | eqid 2622 | . . 3 ⊢ (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ ) = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ ) | |
24 | 22, 23 | fmptd 6385 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ ):𝐼⟶𝑋) |
25 | vrgpfval.u | . . . 4 ⊢ 𝑈 = (varFGrp‘𝐼) | |
26 | 18, 25 | vrgpfval 18179 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
27 | 26 | feq1d 6030 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝑈:𝐼⟶𝑋 ↔ (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ ):𝐼⟶𝑋)) |
28 | 24, 27 | mpbird 247 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∅c0 3915 {cpr 4179 〈cop 4183 ↦ cmpt 4729 I cid 5023 × cxp 5112 Oncon0 5723 ⟶wf 5884 ‘cfv 5888 1𝑜c1o 7553 2𝑜c2o 7554 [cec 7740 Word cword 13291 〈“cs1 13294 Basecbs 15857 ~FG cefg 18119 freeGrpcfrgp 18120 varFGrpcvrgp 18121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-ec 7744 df-qs 7748 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-s1 13302 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-imas 16168 df-qus 16169 df-frmd 17386 df-frgp 18123 df-vrgp 18124 |
This theorem is referenced by: frgpup3lem 18190 frgpup3 18191 0frgp 18192 frgpnabllem2 18277 frgpnabl 18278 frgpcyg 19922 |
Copyright terms: Public domain | W3C validator |