MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1egrvtxdg0 Structured version   Visualization version   Unicode version

Theorem 1egrvtxdg0 26407
Description: The vertex degree of a one-edge graph, case 1: an edge between two vertices other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1egrvtxdg1.v  |-  ( ph  ->  (Vtx `  G )  =  V )
1egrvtxdg1.a  |-  ( ph  ->  A  e.  X )
1egrvtxdg1.b  |-  ( ph  ->  B  e.  V )
1egrvtxdg1.c  |-  ( ph  ->  C  e.  V )
1egrvtxdg1.n  |-  ( ph  ->  B  =/=  C )
1egrvtxdg0.d  |-  ( ph  ->  D  e.  V )
1egrvtxdg0.n  |-  ( ph  ->  C  =/=  D )
1egrvtxdg0.i  |-  ( ph  ->  (iEdg `  G )  =  { <. A ,  { B ,  D } >. } )
Assertion
Ref Expression
1egrvtxdg0  |-  ( ph  ->  ( (VtxDeg `  G
) `  C )  =  0 )

Proof of Theorem 1egrvtxdg0
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 1egrvtxdg1.v . . . . 5  |-  ( ph  ->  (Vtx `  G )  =  V )
21adantl 482 . . . 4  |-  ( ( B  =  D  /\  ph )  ->  (Vtx `  G
)  =  V )
3 1egrvtxdg1.a . . . . 5  |-  ( ph  ->  A  e.  X )
43adantl 482 . . . 4  |-  ( ( B  =  D  /\  ph )  ->  A  e.  X )
5 1egrvtxdg1.b . . . . 5  |-  ( ph  ->  B  e.  V )
65adantl 482 . . . 4  |-  ( ( B  =  D  /\  ph )  ->  B  e.  V )
7 1egrvtxdg0.i . . . . . 6  |-  ( ph  ->  (iEdg `  G )  =  { <. A ,  { B ,  D } >. } )
87adantl 482 . . . . 5  |-  ( ( B  =  D  /\  ph )  ->  (iEdg `  G
)  =  { <. A ,  { B ,  D } >. } )
9 preq2 4269 . . . . . . . . . 10  |-  ( D  =  B  ->  { B ,  D }  =  { B ,  B }
)
109eqcoms 2630 . . . . . . . . 9  |-  ( B  =  D  ->  { B ,  D }  =  { B ,  B }
)
11 dfsn2 4190 . . . . . . . . 9  |-  { B }  =  { B ,  B }
1210, 11syl6eqr 2674 . . . . . . . 8  |-  ( B  =  D  ->  { B ,  D }  =  { B } )
1312adantr 481 . . . . . . 7  |-  ( ( B  =  D  /\  ph )  ->  { B ,  D }  =  { B } )
1413opeq2d 4409 . . . . . 6  |-  ( ( B  =  D  /\  ph )  ->  <. A ,  { B ,  D } >.  =  <. A ,  { B } >. )
1514sneqd 4189 . . . . 5  |-  ( ( B  =  D  /\  ph )  ->  { <. A ,  { B ,  D } >. }  =  { <. A ,  { B } >. } )
168, 15eqtrd 2656 . . . 4  |-  ( ( B  =  D  /\  ph )  ->  (iEdg `  G
)  =  { <. A ,  { B } >. } )
17 1egrvtxdg1.c . . . . . . 7  |-  ( ph  ->  C  e.  V )
18 1egrvtxdg1.n . . . . . . . 8  |-  ( ph  ->  B  =/=  C )
1918necomd 2849 . . . . . . 7  |-  ( ph  ->  C  =/=  B )
2017, 19jca 554 . . . . . 6  |-  ( ph  ->  ( C  e.  V  /\  C  =/=  B
) )
21 eldifsn 4317 . . . . . 6  |-  ( C  e.  ( V  \  { B } )  <->  ( C  e.  V  /\  C  =/= 
B ) )
2220, 21sylibr 224 . . . . 5  |-  ( ph  ->  C  e.  ( V 
\  { B }
) )
2322adantl 482 . . . 4  |-  ( ( B  =  D  /\  ph )  ->  C  e.  ( V  \  { B } ) )
242, 4, 6, 16, 231loopgrvd0 26400 . . 3  |-  ( ( B  =  D  /\  ph )  ->  ( (VtxDeg `  G ) `  C
)  =  0 )
2524ex 450 . 2  |-  ( B  =  D  ->  ( ph  ->  ( (VtxDeg `  G ) `  C
)  =  0 ) )
26 necom 2847 . . . . . . . . . 10  |-  ( B  =/=  C  <->  C  =/=  B )
27 df-ne 2795 . . . . . . . . . 10  |-  ( C  =/=  B  <->  -.  C  =  B )
2826, 27sylbb 209 . . . . . . . . 9  |-  ( B  =/=  C  ->  -.  C  =  B )
2918, 28syl 17 . . . . . . . 8  |-  ( ph  ->  -.  C  =  B )
30 1egrvtxdg0.n . . . . . . . . 9  |-  ( ph  ->  C  =/=  D )
3130neneqd 2799 . . . . . . . 8  |-  ( ph  ->  -.  C  =  D )
3229, 31jca 554 . . . . . . 7  |-  ( ph  ->  ( -.  C  =  B  /\  -.  C  =  D ) )
3332adantl 482 . . . . . 6  |-  ( ( B  =/=  D  /\  ph )  ->  ( -.  C  =  B  /\  -.  C  =  D
) )
34 ioran 511 . . . . . 6  |-  ( -.  ( C  =  B  \/  C  =  D )  <->  ( -.  C  =  B  /\  -.  C  =  D ) )
3533, 34sylibr 224 . . . . 5  |-  ( ( B  =/=  D  /\  ph )  ->  -.  ( C  =  B  \/  C  =  D )
)
36 edgval 25941 . . . . . . . . 9  |-  (Edg `  G )  =  ran  (iEdg `  G )
377rneqd 5353 . . . . . . . . . 10  |-  ( ph  ->  ran  (iEdg `  G
)  =  ran  { <. A ,  { B ,  D } >. } )
38 rnsnopg 5614 . . . . . . . . . . 11  |-  ( A  e.  X  ->  ran  {
<. A ,  { B ,  D } >. }  =  { { B ,  D } } )
393, 38syl 17 . . . . . . . . . 10  |-  ( ph  ->  ran  { <. A ,  { B ,  D } >. }  =  { { B ,  D } } )
4037, 39eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ran  (iEdg `  G
)  =  { { B ,  D } } )
4136, 40syl5eq 2668 . . . . . . . 8  |-  ( ph  ->  (Edg `  G )  =  { { B ,  D } } )
4241adantl 482 . . . . . . 7  |-  ( ( B  =/=  D  /\  ph )  ->  (Edg `  G
)  =  { { B ,  D } } )
4342rexeqdv 3145 . . . . . 6  |-  ( ( B  =/=  D  /\  ph )  ->  ( E. e  e.  (Edg `  G
) C  e.  e  <->  E. e  e.  { { B ,  D } } C  e.  e
) )
44 prex 4909 . . . . . . 7  |-  { B ,  D }  e.  _V
45 eleq2 2690 . . . . . . . 8  |-  ( e  =  { B ,  D }  ->  ( C  e.  e  <->  C  e.  { B ,  D }
) )
4645rexsng 4219 . . . . . . 7  |-  ( { B ,  D }  e.  _V  ->  ( E. e  e.  { { B ,  D } } C  e.  e  <->  C  e.  { B ,  D } ) )
4744, 46mp1i 13 . . . . . 6  |-  ( ( B  =/=  D  /\  ph )  ->  ( E. e  e.  { { B ,  D } } C  e.  e  <->  C  e.  { B ,  D } ) )
48 elprg 4196 . . . . . . . 8  |-  ( C  e.  V  ->  ( C  e.  { B ,  D }  <->  ( C  =  B  \/  C  =  D ) ) )
4917, 48syl 17 . . . . . . 7  |-  ( ph  ->  ( C  e.  { B ,  D }  <->  ( C  =  B  \/  C  =  D )
) )
5049adantl 482 . . . . . 6  |-  ( ( B  =/=  D  /\  ph )  ->  ( C  e.  { B ,  D } 
<->  ( C  =  B  \/  C  =  D ) ) )
5143, 47, 503bitrd 294 . . . . 5  |-  ( ( B  =/=  D  /\  ph )  ->  ( E. e  e.  (Edg `  G
) C  e.  e  <-> 
( C  =  B  \/  C  =  D ) ) )
5235, 51mtbird 315 . . . 4  |-  ( ( B  =/=  D  /\  ph )  ->  -.  E. e  e.  (Edg `  G ) C  e.  e )
53 eqid 2622 . . . . . 6  |-  (Vtx `  G )  =  (Vtx
`  G )
543adantl 482 . . . . . 6  |-  ( ( B  =/=  D  /\  ph )  ->  A  e.  X )
555, 1eleqtrrd 2704 . . . . . . 7  |-  ( ph  ->  B  e.  (Vtx `  G ) )
5655adantl 482 . . . . . 6  |-  ( ( B  =/=  D  /\  ph )  ->  B  e.  (Vtx `  G ) )
57 1egrvtxdg0.d . . . . . . . 8  |-  ( ph  ->  D  e.  V )
5857, 1eleqtrrd 2704 . . . . . . 7  |-  ( ph  ->  D  e.  (Vtx `  G ) )
5958adantl 482 . . . . . 6  |-  ( ( B  =/=  D  /\  ph )  ->  D  e.  (Vtx `  G ) )
607adantl 482 . . . . . 6  |-  ( ( B  =/=  D  /\  ph )  ->  (iEdg `  G
)  =  { <. A ,  { B ,  D } >. } )
61 simpl 473 . . . . . 6  |-  ( ( B  =/=  D  /\  ph )  ->  B  =/=  D )
6253, 54, 56, 59, 60, 61usgr1e 26137 . . . . 5  |-  ( ( B  =/=  D  /\  ph )  ->  G  e. USGraph  )
6317, 1eleqtrrd 2704 . . . . . 6  |-  ( ph  ->  C  e.  (Vtx `  G ) )
6463adantl 482 . . . . 5  |-  ( ( B  =/=  D  /\  ph )  ->  C  e.  (Vtx `  G ) )
65 eqid 2622 . . . . . 6  |-  (Edg `  G )  =  (Edg
`  G )
66 eqid 2622 . . . . . 6  |-  (VtxDeg `  G )  =  (VtxDeg `  G )
6753, 65, 66vtxdusgr0edgnel 26391 . . . . 5  |-  ( ( G  e. USGraph  /\  C  e.  (Vtx `  G )
)  ->  ( (
(VtxDeg `  G ) `  C )  =  0  <->  -.  E. e  e.  (Edg
`  G ) C  e.  e ) )
6862, 64, 67syl2anc 693 . . . 4  |-  ( ( B  =/=  D  /\  ph )  ->  ( (
(VtxDeg `  G ) `  C )  =  0  <->  -.  E. e  e.  (Edg
`  G ) C  e.  e ) )
6952, 68mpbird 247 . . 3  |-  ( ( B  =/=  D  /\  ph )  ->  ( (VtxDeg `  G ) `  C
)  =  0 )
7069ex 450 . 2  |-  ( B  =/=  D  ->  ( ph  ->  ( (VtxDeg `  G ) `  C
)  =  0 ) )
7125, 70pm2.61ine 2877 1  |-  ( ph  ->  ( (VtxDeg `  G
) `  C )  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    \ cdif 3571   {csn 4177   {cpr 4179   <.cop 4183   ran crn 5115   ` cfv 5888   0cc0 9936  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   USGraph cusgr 26044  VtxDegcvtxdg 26361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-xadd 11947  df-fz 12327  df-hash 13118  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-uspgr 26045  df-usgr 26046  df-vtxdg 26362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator