MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2swrdeqwrdeq Structured version   Visualization version   Unicode version

Theorem 2swrdeqwrdeq 13453
Description: Two words are equal if and only if they have the same prefix and the same suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
2swrdeqwrdeq  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W ) ) )  ->  ( W  =  S  <->  ( ( # `  W )  =  (
# `  S )  /\  ( ( W substr  <. 0 ,  I >. )  =  ( S substr  <. 0 ,  I >. )  /\  ( W substr  <. I ,  ( # `  W ) >. )  =  ( S substr  <. I ,  ( # `  W
) >. ) ) ) ) )

Proof of Theorem 2swrdeqwrdeq
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 eqwrd 13346 . . 3  |-  ( ( W  e. Word  V  /\  S  e. Word  V )  ->  ( W  =  S  <-> 
( ( # `  W
)  =  ( # `  S )  /\  A. i  e.  ( 0..^ ( # `  W
) ) ( W `
 i )  =  ( S `  i
) ) ) )
213adant3 1081 . 2  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W ) ) )  ->  ( W  =  S  <->  ( ( # `  W )  =  (
# `  S )  /\  A. i  e.  ( 0..^ ( # `  W
) ) ( W `
 i )  =  ( S `  i
) ) ) )
3 elfzofz 12485 . . . . . . . . 9  |-  ( I  e.  ( 0..^ (
# `  W )
)  ->  I  e.  ( 0 ... ( # `
 W ) ) )
4 fzosplit 12501 . . . . . . . . 9  |-  ( I  e.  ( 0 ... ( # `  W
) )  ->  (
0..^ ( # `  W
) )  =  ( ( 0..^ I )  u.  ( I..^ (
# `  W )
) ) )
53, 4syl 17 . . . . . . . 8  |-  ( I  e.  ( 0..^ (
# `  W )
)  ->  ( 0..^ ( # `  W
) )  =  ( ( 0..^ I )  u.  ( I..^ (
# `  W )
) ) )
653ad2ant3 1084 . . . . . . 7  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W ) ) )  ->  ( 0..^ (
# `  W )
)  =  ( ( 0..^ I )  u.  ( I..^ ( # `  W ) ) ) )
76adantr 481 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  ( # `  W )  =  ( # `  S
) )  ->  (
0..^ ( # `  W
) )  =  ( ( 0..^ I )  u.  ( I..^ (
# `  W )
) ) )
87raleqdv 3144 . . . . 5  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  ( # `  W )  =  ( # `  S
) )  ->  ( A. i  e.  (
0..^ ( # `  W
) ) ( W `
 i )  =  ( S `  i
)  <->  A. i  e.  ( ( 0..^ I )  u.  ( I..^ (
# `  W )
) ) ( W `
 i )  =  ( S `  i
) ) )
9 ralunb 3794 . . . . 5  |-  ( A. i  e.  ( (
0..^ I )  u.  ( I..^ ( # `  W ) ) ) ( W `  i
)  =  ( S `
 i )  <->  ( A. i  e.  ( 0..^ I ) ( W `
 i )  =  ( S `  i
)  /\  A. i  e.  ( I..^ ( # `  W ) ) ( W `  i )  =  ( S `  i ) ) )
108, 9syl6bb 276 . . . 4  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  ( # `  W )  =  ( # `  S
) )  ->  ( A. i  e.  (
0..^ ( # `  W
) ) ( W `
 i )  =  ( S `  i
)  <->  ( A. i  e.  ( 0..^ I ) ( W `  i
)  =  ( S `
 i )  /\  A. i  e.  ( I..^ ( # `  W
) ) ( W `
 i )  =  ( S `  i
) ) ) )
11 3simpa 1058 . . . . . . 7  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W ) ) )  ->  ( W  e. Word  V  /\  S  e. Word  V
) )
1211adantr 481 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  ( # `  W )  =  ( # `  S
) )  ->  ( W  e. Word  V  /\  S  e. Word  V ) )
13 elfzonn0 12512 . . . . . . . . 9  |-  ( I  e.  ( 0..^ (
# `  W )
)  ->  I  e.  NN0 )
14133ad2ant3 1084 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W ) ) )  ->  I  e.  NN0 )
1514adantr 481 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  ( # `  W )  =  ( # `  S
) )  ->  I  e.  NN0 )
16 0nn0 11307 . . . . . . 7  |-  0  e.  NN0
1715, 16jctil 560 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  ( # `  W )  =  ( # `  S
) )  ->  (
0  e.  NN0  /\  I  e.  NN0 ) )
18 elfzo0le 12511 . . . . . . . 8  |-  ( I  e.  ( 0..^ (
# `  W )
)  ->  I  <_  (
# `  W )
)
19183ad2ant3 1084 . . . . . . 7  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W ) ) )  ->  I  <_  ( # `
 W ) )
2019adantr 481 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  ( # `  W )  =  ( # `  S
) )  ->  I  <_  ( # `  W
) )
21 breq2 4657 . . . . . . . 8  |-  ( (
# `  W )  =  ( # `  S
)  ->  ( I  <_  ( # `  W
)  <->  I  <_  ( # `  S ) ) )
2221adantl 482 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  ( # `  W )  =  ( # `  S
) )  ->  (
I  <_  ( # `  W
)  <->  I  <_  ( # `  S ) ) )
2320, 22mpbid 222 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  ( # `  W )  =  ( # `  S
) )  ->  I  <_  ( # `  S
) )
24 swrdspsleq 13449 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V )  /\  ( 0  e. 
NN0  /\  I  e.  NN0 )  /\  ( I  <_  ( # `  W
)  /\  I  <_  (
# `  S )
) )  ->  (
( W substr  <. 0 ,  I >. )  =  ( S substr  <. 0 ,  I >. )  <->  A. i  e.  ( 0..^ I ) ( W `  i )  =  ( S `  i ) ) )
2524bicomd 213 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V )  /\  ( 0  e. 
NN0  /\  I  e.  NN0 )  /\  ( I  <_  ( # `  W
)  /\  I  <_  (
# `  S )
) )  ->  ( A. i  e.  (
0..^ I ) ( W `  i )  =  ( S `  i )  <->  ( W substr  <.
0 ,  I >. )  =  ( S substr  <. 0 ,  I >. ) ) )
2612, 17, 20, 23, 25syl112anc 1330 . . . . 5  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  ( # `  W )  =  ( # `  S
) )  ->  ( A. i  e.  (
0..^ I ) ( W `  i )  =  ( S `  i )  <->  ( W substr  <.
0 ,  I >. )  =  ( S substr  <. 0 ,  I >. ) ) )
27 lencl 13324 . . . . . . . . 9  |-  ( W  e. Word  V  ->  ( # `
 W )  e. 
NN0 )
28273ad2ant1 1082 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W ) ) )  ->  ( # `  W
)  e.  NN0 )
2914, 28jca 554 . . . . . . 7  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W ) ) )  ->  ( I  e. 
NN0  /\  ( # `  W
)  e.  NN0 )
)
3029adantr 481 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  ( # `  W )  =  ( # `  S
) )  ->  (
I  e.  NN0  /\  ( # `  W )  e.  NN0 ) )
31 nn0re 11301 . . . . . . . . . 10  |-  ( (
# `  W )  e.  NN0  ->  ( # `  W
)  e.  RR )
3231leidd 10594 . . . . . . . . 9  |-  ( (
# `  W )  e.  NN0  ->  ( # `  W
)  <_  ( # `  W
) )
3327, 32syl 17 . . . . . . . 8  |-  ( W  e. Word  V  ->  ( # `
 W )  <_ 
( # `  W ) )
34333ad2ant1 1082 . . . . . . 7  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W ) ) )  ->  ( # `  W
)  <_  ( # `  W
) )
3534adantr 481 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  ( # `  W )  =  ( # `  S
) )  ->  ( # `
 W )  <_ 
( # `  W ) )
36 breq2 4657 . . . . . . . 8  |-  ( (
# `  W )  =  ( # `  S
)  ->  ( ( # `
 W )  <_ 
( # `  W )  <-> 
( # `  W )  <_  ( # `  S
) ) )
3736adantl 482 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  ( # `  W )  =  ( # `  S
) )  ->  (
( # `  W )  <_  ( # `  W
)  <->  ( # `  W
)  <_  ( # `  S
) ) )
3835, 37mpbid 222 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  ( # `  W )  =  ( # `  S
) )  ->  ( # `
 W )  <_ 
( # `  S ) )
39 swrdspsleq 13449 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V )  /\  ( I  e. 
NN0  /\  ( # `  W
)  e.  NN0 )  /\  ( ( # `  W
)  <_  ( # `  W
)  /\  ( # `  W
)  <_  ( # `  S
) ) )  -> 
( ( W substr  <. I ,  ( # `  W
) >. )  =  ( S substr  <. I ,  (
# `  W ) >. )  <->  A. i  e.  ( I..^ ( # `  W
) ) ( W `
 i )  =  ( S `  i
) ) )
4039bicomd 213 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V )  /\  ( I  e. 
NN0  /\  ( # `  W
)  e.  NN0 )  /\  ( ( # `  W
)  <_  ( # `  W
)  /\  ( # `  W
)  <_  ( # `  S
) ) )  -> 
( A. i  e.  ( I..^ ( # `  W ) ) ( W `  i )  =  ( S `  i )  <->  ( W substr  <.
I ,  ( # `  W ) >. )  =  ( S substr  <. I ,  ( # `  W
) >. ) ) )
4112, 30, 35, 38, 40syl112anc 1330 . . . . 5  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  ( # `  W )  =  ( # `  S
) )  ->  ( A. i  e.  (
I..^ ( # `  W
) ) ( W `
 i )  =  ( S `  i
)  <->  ( W substr  <. I ,  ( # `  W
) >. )  =  ( S substr  <. I ,  (
# `  W ) >. ) ) )
4226, 41anbi12d 747 . . . 4  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  ( # `  W )  =  ( # `  S
) )  ->  (
( A. i  e.  ( 0..^ I ) ( W `  i
)  =  ( S `
 i )  /\  A. i  e.  ( I..^ ( # `  W
) ) ( W `
 i )  =  ( S `  i
) )  <->  ( ( W substr  <. 0 ,  I >. )  =  ( S substr  <. 0 ,  I >. )  /\  ( W substr  <. I ,  ( # `  W
) >. )  =  ( S substr  <. I ,  (
# `  W ) >. ) ) ) )
4310, 42bitrd 268 . . 3  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  ( # `  W )  =  ( # `  S
) )  ->  ( A. i  e.  (
0..^ ( # `  W
) ) ( W `
 i )  =  ( S `  i
)  <->  ( ( W substr  <. 0 ,  I >. )  =  ( S substr  <. 0 ,  I >. )  /\  ( W substr  <. I ,  (
# `  W ) >. )  =  ( S substr  <. I ,  ( # `  W ) >. )
) ) )
4443pm5.32da 673 . 2  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W ) ) )  ->  ( ( (
# `  W )  =  ( # `  S
)  /\  A. i  e.  ( 0..^ ( # `  W ) ) ( W `  i )  =  ( S `  i ) )  <->  ( ( # `
 W )  =  ( # `  S
)  /\  ( ( W substr  <. 0 ,  I >. )  =  ( S substr  <. 0 ,  I >. )  /\  ( W substr  <. I ,  ( # `  W
) >. )  =  ( S substr  <. I ,  (
# `  W ) >. ) ) ) ) )
452, 44bitrd 268 1  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( # `  W ) ) )  ->  ( W  =  S  <->  ( ( # `  W )  =  (
# `  S )  /\  ( ( W substr  <. 0 ,  I >. )  =  ( S substr  <. 0 ,  I >. )  /\  ( W substr  <. I ,  ( # `  W ) >. )  =  ( S substr  <. I ,  ( # `  W
) >. ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    u. cun 3572   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936    <_ cle 10075   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-substr 13303
This theorem is referenced by:  2swrd1eqwrdeq  13454  2swrd2eqwrdeq  13696
  Copyright terms: Public domain W3C validator