MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkdlem4 Structured version   Visualization version   Unicode version

Theorem 3wlkdlem4 27022
Description: Lemma 4 for 3wlkd 27030. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p  |-  P  = 
<" A B C D ">
3wlkd.f  |-  F  = 
<" J K L ">
3wlkd.s  |-  ( ph  ->  ( ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
) )
Assertion
Ref Expression
3wlkdlem4  |-  ( ph  ->  A. k  e.  ( 0 ... ( # `  F ) ) ( P `  k )  e.  V )
Distinct variable groups:    A, k    B, k    C, k    D, k   
k, J    k, K    k, L    k, V    k, F    P, k
Allowed substitution hint:    ph( k)

Proof of Theorem 3wlkdlem4
StepHypRef Expression
1 3wlkd.s . . 3  |-  ( ph  ->  ( ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
) )
2 3wlkd.p . . . 4  |-  P  = 
<" A B C D ">
3 3wlkd.f . . . 4  |-  F  = 
<" J K L ">
42, 3, 13wlkdlem3 27021 . . 3  |-  ( ph  ->  ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) ) )
5 simpl 473 . . . . . . . . 9  |-  ( ( ( P `  0
)  =  A  /\  ( P `  1 )  =  B )  -> 
( P `  0
)  =  A )
65eleq1d 2686 . . . . . . . 8  |-  ( ( ( P `  0
)  =  A  /\  ( P `  1 )  =  B )  -> 
( ( P ` 
0 )  e.  V  <->  A  e.  V ) )
7 simpr 477 . . . . . . . . 9  |-  ( ( ( P `  0
)  =  A  /\  ( P `  1 )  =  B )  -> 
( P `  1
)  =  B )
87eleq1d 2686 . . . . . . . 8  |-  ( ( ( P `  0
)  =  A  /\  ( P `  1 )  =  B )  -> 
( ( P ` 
1 )  e.  V  <->  B  e.  V ) )
96, 8anbi12d 747 . . . . . . 7  |-  ( ( ( P `  0
)  =  A  /\  ( P `  1 )  =  B )  -> 
( ( ( P `
 0 )  e.  V  /\  ( P `
 1 )  e.  V )  <->  ( A  e.  V  /\  B  e.  V ) ) )
109biimparc 504 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  V
)  /\  ( ( P `  0 )  =  A  /\  ( P `  1 )  =  B ) )  -> 
( ( P ` 
0 )  e.  V  /\  ( P `  1
)  e.  V ) )
11 c0ex 10034 . . . . . . . 8  |-  0  e.  _V
12 1ex 10035 . . . . . . . 8  |-  1  e.  _V
1311, 12pm3.2i 471 . . . . . . 7  |-  ( 0  e.  _V  /\  1  e.  _V )
14 fveq2 6191 . . . . . . . . 9  |-  ( k  =  0  ->  ( P `  k )  =  ( P ` 
0 ) )
1514eleq1d 2686 . . . . . . . 8  |-  ( k  =  0  ->  (
( P `  k
)  e.  V  <->  ( P `  0 )  e.  V ) )
16 fveq2 6191 . . . . . . . . 9  |-  ( k  =  1  ->  ( P `  k )  =  ( P ` 
1 ) )
1716eleq1d 2686 . . . . . . . 8  |-  ( k  =  1  ->  (
( P `  k
)  e.  V  <->  ( P `  1 )  e.  V ) )
1815, 17ralprg 4234 . . . . . . 7  |-  ( ( 0  e.  _V  /\  1  e.  _V )  ->  ( A. k  e. 
{ 0 ,  1 }  ( P `  k )  e.  V  <->  ( ( P `  0
)  e.  V  /\  ( P `  1 )  e.  V ) ) )
1913, 18mp1i 13 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  V
)  /\  ( ( P `  0 )  =  A  /\  ( P `  1 )  =  B ) )  -> 
( A. k  e. 
{ 0 ,  1 }  ( P `  k )  e.  V  <->  ( ( P `  0
)  e.  V  /\  ( P `  1 )  e.  V ) ) )
2010, 19mpbird 247 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  V
)  /\  ( ( P `  0 )  =  A  /\  ( P `  1 )  =  B ) )  ->  A. k  e.  { 0 ,  1 }  ( P `  k )  e.  V )
2120ex 450 . . . 4  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  ->  A. k  e.  { 0 ,  1 }  ( P `  k )  e.  V
) )
22 simpl 473 . . . . . . . . 9  |-  ( ( ( P `  2
)  =  C  /\  ( P `  3 )  =  D )  -> 
( P `  2
)  =  C )
2322eleq1d 2686 . . . . . . . 8  |-  ( ( ( P `  2
)  =  C  /\  ( P `  3 )  =  D )  -> 
( ( P ` 
2 )  e.  V  <->  C  e.  V ) )
24 simpr 477 . . . . . . . . 9  |-  ( ( ( P `  2
)  =  C  /\  ( P `  3 )  =  D )  -> 
( P `  3
)  =  D )
2524eleq1d 2686 . . . . . . . 8  |-  ( ( ( P `  2
)  =  C  /\  ( P `  3 )  =  D )  -> 
( ( P ` 
3 )  e.  V  <->  D  e.  V ) )
2623, 25anbi12d 747 . . . . . . 7  |-  ( ( ( P `  2
)  =  C  /\  ( P `  3 )  =  D )  -> 
( ( ( P `
 2 )  e.  V  /\  ( P `
 3 )  e.  V )  <->  ( C  e.  V  /\  D  e.  V ) ) )
2726biimparc 504 . . . . . 6  |-  ( ( ( C  e.  V  /\  D  e.  V
)  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( ( P ` 
2 )  e.  V  /\  ( P `  3
)  e.  V ) )
28 2ex 11092 . . . . . . . 8  |-  2  e.  _V
29 3ex 11096 . . . . . . . 8  |-  3  e.  _V
3028, 29pm3.2i 471 . . . . . . 7  |-  ( 2  e.  _V  /\  3  e.  _V )
31 fveq2 6191 . . . . . . . . 9  |-  ( k  =  2  ->  ( P `  k )  =  ( P ` 
2 ) )
3231eleq1d 2686 . . . . . . . 8  |-  ( k  =  2  ->  (
( P `  k
)  e.  V  <->  ( P `  2 )  e.  V ) )
33 fveq2 6191 . . . . . . . . 9  |-  ( k  =  3  ->  ( P `  k )  =  ( P ` 
3 ) )
3433eleq1d 2686 . . . . . . . 8  |-  ( k  =  3  ->  (
( P `  k
)  e.  V  <->  ( P `  3 )  e.  V ) )
3532, 34ralprg 4234 . . . . . . 7  |-  ( ( 2  e.  _V  /\  3  e.  _V )  ->  ( A. k  e. 
{ 2 ,  3 }  ( P `  k )  e.  V  <->  ( ( P `  2
)  e.  V  /\  ( P `  3 )  e.  V ) ) )
3630, 35mp1i 13 . . . . . 6  |-  ( ( ( C  e.  V  /\  D  e.  V
)  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( A. k  e. 
{ 2 ,  3 }  ( P `  k )  e.  V  <->  ( ( P `  2
)  e.  V  /\  ( P `  3 )  e.  V ) ) )
3727, 36mpbird 247 . . . . 5  |-  ( ( ( C  e.  V  /\  D  e.  V
)  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  ->  A. k  e.  { 2 ,  3 }  ( P `  k )  e.  V )
3837ex 450 . . . 4  |-  ( ( C  e.  V  /\  D  e.  V )  ->  ( ( ( P `
 2 )  =  C  /\  ( P `
 3 )  =  D )  ->  A. k  e.  { 2 ,  3 }  ( P `  k )  e.  V
) )
3921, 38im2anan9 880 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  V
)  /\  ( C  e.  V  /\  D  e.  V ) )  -> 
( ( ( ( P `  0 )  =  A  /\  ( P `  1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  ->  ( A. k  e.  { 0 ,  1 }  ( P `  k )  e.  V  /\  A. k  e.  {
2 ,  3 }  ( P `  k
)  e.  V ) ) )
401, 4, 39sylc 65 . 2  |-  ( ph  ->  ( A. k  e. 
{ 0 ,  1 }  ( P `  k )  e.  V  /\  A. k  e.  {
2 ,  3 }  ( P `  k
)  e.  V ) )
413fveq2i 6194 . . . . . . 7  |-  ( # `  F )  =  (
# `  <" J K L "> )
42 s3len 13639 . . . . . . 7  |-  ( # `  <" J K L "> )  =  3
4341, 42eqtri 2644 . . . . . 6  |-  ( # `  F )  =  3
4443oveq2i 6661 . . . . 5  |-  ( 0 ... ( # `  F
) )  =  ( 0 ... 3 )
45 fz0to3un2pr 12441 . . . . 5  |-  ( 0 ... 3 )  =  ( { 0 ,  1 }  u.  {
2 ,  3 } )
4644, 45eqtri 2644 . . . 4  |-  ( 0 ... ( # `  F
) )  =  ( { 0 ,  1 }  u.  { 2 ,  3 } )
4746raleqi 3142 . . 3  |-  ( A. k  e.  ( 0 ... ( # `  F
) ) ( P `
 k )  e.  V  <->  A. k  e.  ( { 0 ,  1 }  u.  { 2 ,  3 } ) ( P `  k
)  e.  V )
48 ralunb 3794 . . 3  |-  ( A. k  e.  ( {
0 ,  1 }  u.  { 2 ,  3 } ) ( P `  k )  e.  V  <->  ( A. k  e.  { 0 ,  1 }  ( P `  k )  e.  V  /\  A. k  e.  { 2 ,  3 }  ( P `  k )  e.  V
) )
4947, 48bitri 264 . 2  |-  ( A. k  e.  ( 0 ... ( # `  F
) ) ( P `
 k )  e.  V  <->  ( A. k  e.  { 0 ,  1 }  ( P `  k )  e.  V  /\  A. k  e.  {
2 ,  3 }  ( P `  k
)  e.  V ) )
5040, 49sylibr 224 1  |-  ( ph  ->  A. k  e.  ( 0 ... ( # `  F ) ) ( P `  k )  e.  V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    u. cun 3572   {cpr 4179   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937   2c2 11070   3c3 11071   ...cfz 12326   #chash 13117   <"cs3 13587   <"cs4 13588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-s4 13595
This theorem is referenced by:  3wlkd  27030
  Copyright terms: Public domain W3C validator