MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abslem2 Structured version   Visualization version   Unicode version

Theorem abslem2 14079
Description: Lemma involving absolute values. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
abslem2  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( ( * `
 ( A  / 
( abs `  A
) ) )  x.  A )  +  ( ( A  /  ( abs `  A ) )  x.  ( * `  A ) ) )  =  ( 2  x.  ( abs `  A
) ) )

Proof of Theorem abslem2
StepHypRef Expression
1 absvalsq 14020 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( abs `  A
) ^ 2 )  =  ( A  x.  ( * `  A
) ) )
21adantr 481 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  A
) ^ 2 )  =  ( A  x.  ( * `  A
) ) )
3 abscl 14018 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
43adantr 481 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  RR )
54recnd 10068 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  CC )
65sqvald 13005 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  A
) ^ 2 )  =  ( ( abs `  A )  x.  ( abs `  A ) ) )
72, 6eqtr3d 2658 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( A  x.  (
* `  A )
)  =  ( ( abs `  A )  x.  ( abs `  A
) ) )
87oveq1d 6665 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( A  x.  ( * `  A
) )  /  ( abs `  A ) )  =  ( ( ( abs `  A )  x.  ( abs `  A
) )  /  ( abs `  A ) ) )
9 simpl 473 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  A  e.  CC )
109cjcld 13936 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( * `  A
)  e.  CC )
11 abs00 14029 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( abs `  A
)  =  0  <->  A  =  0 ) )
1211necon3bid 2838 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( abs `  A
)  =/=  0  <->  A  =/=  0 ) )
1312biimpar 502 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  =/=  0 )
149, 10, 5, 13div23d 10838 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( A  x.  ( * `  A
) )  /  ( abs `  A ) )  =  ( ( A  /  ( abs `  A
) )  x.  (
* `  A )
) )
155, 5, 13divcan3d 10806 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( ( abs `  A )  x.  ( abs `  A ) )  /  ( abs `  A
) )  =  ( abs `  A ) )
168, 14, 153eqtr3d 2664 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( A  / 
( abs `  A
) )  x.  (
* `  A )
)  =  ( abs `  A ) )
1716fveq2d 6195 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( * `  (
( A  /  ( abs `  A ) )  x.  ( * `  A ) ) )  =  ( * `  ( abs `  A ) ) )
189, 5, 13divcld 10801 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( A  /  ( abs `  A ) )  e.  CC )
1918, 10cjmuld 13961 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( * `  (
( A  /  ( abs `  A ) )  x.  ( * `  A ) ) )  =  ( ( * `
 ( A  / 
( abs `  A
) ) )  x.  ( * `  (
* `  A )
) ) )
209cjcjd 13939 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( * `  (
* `  A )
)  =  A )
2120oveq2d 6666 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( * `  ( A  /  ( abs `  A ) ) )  x.  ( * `
 ( * `  A ) ) )  =  ( ( * `
 ( A  / 
( abs `  A
) ) )  x.  A ) )
2219, 21eqtrd 2656 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( * `  (
( A  /  ( abs `  A ) )  x.  ( * `  A ) ) )  =  ( ( * `
 ( A  / 
( abs `  A
) ) )  x.  A ) )
234cjred 13966 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( * `  ( abs `  A ) )  =  ( abs `  A
) )
2417, 22, 233eqtr3d 2664 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( * `  ( A  /  ( abs `  A ) ) )  x.  A )  =  ( abs `  A
) )
2524, 16oveq12d 6668 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( ( * `
 ( A  / 
( abs `  A
) ) )  x.  A )  +  ( ( A  /  ( abs `  A ) )  x.  ( * `  A ) ) )  =  ( ( abs `  A )  +  ( abs `  A ) ) )
2652timesd 11275 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( 2  x.  ( abs `  A ) )  =  ( ( abs `  A )  +  ( abs `  A ) ) )
2725, 26eqtr4d 2659 1  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( ( * `
 ( A  / 
( abs `  A
) ) )  x.  A )  +  ( ( A  /  ( abs `  A ) )  x.  ( * `  A ) ) )  =  ( 2  x.  ( abs `  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941    / cdiv 10684   2c2 11070   ^cexp 12860   *ccj 13836   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  bcsiALT  28036
  Copyright terms: Public domain W3C validator