MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsdrscl Structured version   Visualization version   Unicode version

Theorem acsdrscl 17170
Description: In an algebraic closure system, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
acsdrscl.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
acsdrscl  |-  ( ( C  e.  (ACS `  X )  /\  Y  C_ 
~P X  /\  (toInc `  Y )  e. Dirset )  ->  ( F `  U. Y )  =  U. ( F " Y ) )

Proof of Theorem acsdrscl
Dummy variables  s 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6220 . . . . 5  |-  ( C  e.  (ACS `  X
)  ->  X  e.  dom ACS )
2 pwexg 4850 . . . . 5  |-  ( X  e.  dom ACS  ->  ~P X  e.  _V )
3 elpw2g 4827 . . . . 5  |-  ( ~P X  e.  _V  ->  ( Y  e.  ~P ~P X 
<->  Y  C_  ~P X
) )
41, 2, 33syl 18 . . . 4  |-  ( C  e.  (ACS `  X
)  ->  ( Y  e.  ~P ~P X  <->  Y  C_  ~P X ) )
54biimpar 502 . . 3  |-  ( ( C  e.  (ACS `  X )  /\  Y  C_ 
~P X )  ->  Y  e.  ~P ~P X )
6 isacs3lem 17166 . . . . . 6  |-  ( C  e.  (ACS `  X
)  ->  ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C ( (toInc `  s )  e. Dirset  ->  U. s  e.  C ) ) )
7 acsdrscl.f . . . . . . 7  |-  F  =  (mrCls `  C )
87isacs4lem 17168 . . . . . 6  |-  ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  C ) )  -> 
( C  e.  (Moore `  X )  /\  A. t  e.  ~P  ~P X
( (toInc `  t
)  e. Dirset  ->  ( F `
 U. t )  =  U. ( F
" t ) ) ) )
96, 8syl 17 . . . . 5  |-  ( C  e.  (ACS `  X
)  ->  ( C  e.  (Moore `  X )  /\  A. t  e.  ~P  ~P X ( (toInc `  t )  e. Dirset  ->  ( F `  U. t
)  =  U. ( F " t ) ) ) )
109simprd 479 . . . 4  |-  ( C  e.  (ACS `  X
)  ->  A. t  e.  ~P  ~P X ( (toInc `  t )  e. Dirset  ->  ( F `  U. t )  =  U. ( F " t ) ) )
1110adantr 481 . . 3  |-  ( ( C  e.  (ACS `  X )  /\  Y  C_ 
~P X )  ->  A. t  e.  ~P  ~P X ( (toInc `  t )  e. Dirset  ->  ( F `  U. t
)  =  U. ( F " t ) ) )
12 fveq2 6191 . . . . . 6  |-  ( t  =  Y  ->  (toInc `  t )  =  (toInc `  Y ) )
1312eleq1d 2686 . . . . 5  |-  ( t  =  Y  ->  (
(toInc `  t )  e. Dirset  <-> 
(toInc `  Y )  e. Dirset ) )
14 unieq 4444 . . . . . . 7  |-  ( t  =  Y  ->  U. t  =  U. Y )
1514fveq2d 6195 . . . . . 6  |-  ( t  =  Y  ->  ( F `  U. t )  =  ( F `  U. Y ) )
16 imaeq2 5462 . . . . . . 7  |-  ( t  =  Y  ->  ( F " t )  =  ( F " Y
) )
1716unieqd 4446 . . . . . 6  |-  ( t  =  Y  ->  U. ( F " t )  = 
U. ( F " Y ) )
1815, 17eqeq12d 2637 . . . . 5  |-  ( t  =  Y  ->  (
( F `  U. t )  =  U. ( F " t )  <-> 
( F `  U. Y )  =  U. ( F " Y ) ) )
1913, 18imbi12d 334 . . . 4  |-  ( t  =  Y  ->  (
( (toInc `  t
)  e. Dirset  ->  ( F `
 U. t )  =  U. ( F
" t ) )  <-> 
( (toInc `  Y
)  e. Dirset  ->  ( F `
 U. Y )  =  U. ( F
" Y ) ) ) )
2019rspcva 3307 . . 3  |-  ( ( Y  e.  ~P ~P X  /\  A. t  e. 
~P  ~P X ( (toInc `  t )  e. Dirset  ->  ( F `  U. t
)  =  U. ( F " t ) ) )  ->  ( (toInc `  Y )  e. Dirset  ->  ( F `  U. Y
)  =  U. ( F " Y ) ) )
215, 11, 20syl2anc 693 . 2  |-  ( ( C  e.  (ACS `  X )  /\  Y  C_ 
~P X )  -> 
( (toInc `  Y
)  e. Dirset  ->  ( F `
 U. Y )  =  U. ( F
" Y ) ) )
22213impia 1261 1  |-  ( ( C  e.  (ACS `  X )  /\  Y  C_ 
~P X  /\  (toInc `  Y )  e. Dirset )  ->  ( F `  U. Y )  =  U. ( F " Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   dom cdm 5114   "cima 5117   ` cfv 5888  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245  Dirsetcdrs 16927  toInccipo 17151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-tset 15960  df-ple 15961  df-ocomp 15963  df-mre 16246  df-mrc 16247  df-acs 16249  df-preset 16928  df-drs 16929  df-poset 16946  df-ipo 17152
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator