MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  algcvga Structured version   Visualization version   Unicode version

Theorem algcvga 15292
Description: The countdown function  C remains  0 after  N steps. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvga.1  |-  F : S
--> S
algcvga.2  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
algcvga.3  |-  C : S
--> NN0
algcvga.4  |-  ( z  e.  S  ->  (
( C `  ( F `  z )
)  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) ) )
algcvga.5  |-  N  =  ( C `  A
)
Assertion
Ref Expression
algcvga  |-  ( A  e.  S  ->  ( K  e.  ( ZZ>= `  N )  ->  ( C `  ( R `  K ) )  =  0 ) )
Distinct variable groups:    z, C    z, F    z, R    z, S
Allowed substitution hints:    A( z)    K( z)    N( z)

Proof of Theorem algcvga
Dummy variables  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algcvga.5 . . 3  |-  N  =  ( C `  A
)
2 algcvga.3 . . . 4  |-  C : S
--> NN0
32ffvelrni 6358 . . 3  |-  ( A  e.  S  ->  ( C `  A )  e.  NN0 )
41, 3syl5eqel 2705 . 2  |-  ( A  e.  S  ->  N  e.  NN0 )
5 nn0z 11400 . . . 4  |-  ( N  e.  NN0  ->  N  e.  ZZ )
6 eluz1 11691 . . . . 5  |-  ( N  e.  ZZ  ->  ( K  e.  ( ZZ>= `  N )  <->  ( K  e.  ZZ  /\  N  <_  K ) ) )
7 fveq2 6191 . . . . . . . . . 10  |-  ( m  =  N  ->  ( R `  m )  =  ( R `  N ) )
87fveq2d 6195 . . . . . . . . 9  |-  ( m  =  N  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  N )
) )
98eqeq1d 2624 . . . . . . . 8  |-  ( m  =  N  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  N ) )  =  0 ) )
109imbi2d 330 . . . . . . 7  |-  ( m  =  N  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  N )
)  =  0 ) ) )
11 fveq2 6191 . . . . . . . . . 10  |-  ( m  =  k  ->  ( R `  m )  =  ( R `  k ) )
1211fveq2d 6195 . . . . . . . . 9  |-  ( m  =  k  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  k )
) )
1312eqeq1d 2624 . . . . . . . 8  |-  ( m  =  k  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  k ) )  =  0 ) )
1413imbi2d 330 . . . . . . 7  |-  ( m  =  k  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  k )
)  =  0 ) ) )
15 fveq2 6191 . . . . . . . . . 10  |-  ( m  =  ( k  +  1 )  ->  ( R `  m )  =  ( R `  ( k  +  1 ) ) )
1615fveq2d 6195 . . . . . . . . 9  |-  ( m  =  ( k  +  1 )  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  ( k  +  1 ) ) ) )
1716eqeq1d 2624 . . . . . . . 8  |-  ( m  =  ( k  +  1 )  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  ( k  +  1 ) ) )  =  0 ) )
1817imbi2d 330 . . . . . . 7  |-  ( m  =  ( k  +  1 )  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  ( k  +  1 ) ) )  =  0 ) ) )
19 fveq2 6191 . . . . . . . . . 10  |-  ( m  =  K  ->  ( R `  m )  =  ( R `  K ) )
2019fveq2d 6195 . . . . . . . . 9  |-  ( m  =  K  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  K )
) )
2120eqeq1d 2624 . . . . . . . 8  |-  ( m  =  K  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  K ) )  =  0 ) )
2221imbi2d 330 . . . . . . 7  |-  ( m  =  K  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  K )
)  =  0 ) ) )
23 algcvga.1 . . . . . . . . 9  |-  F : S
--> S
24 algcvga.2 . . . . . . . . 9  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
25 algcvga.4 . . . . . . . . 9  |-  ( z  e.  S  ->  (
( C `  ( F `  z )
)  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) ) )
2623, 24, 2, 25, 1algcvg 15289 . . . . . . . 8  |-  ( A  e.  S  ->  ( C `  ( R `  N ) )  =  0 )
2726a1i 11 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( A  e.  S  ->  ( C `  ( R `
 N ) )  =  0 ) )
28 nn0ge0 11318 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  0  <_  N )
2928adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  0  <_  N )
30 nn0re 11301 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  N  e.  RR )
31 zre 11381 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ZZ  ->  k  e.  RR )
32 0re 10040 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
33 letr 10131 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  N  e.  RR  /\  k  e.  RR )  ->  (
( 0  <_  N  /\  N  <_  k )  ->  0  <_  k
) )
3432, 33mp3an1 1411 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  RR  /\  k  e.  RR )  ->  ( ( 0  <_  N  /\  N  <_  k
)  ->  0  <_  k ) )
3530, 31, 34syl2an 494 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( ( 0  <_  N  /\  N  <_  k
)  ->  0  <_  k ) )
3629, 35mpand 711 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  <_  k  ->  0  <_  k )
)
37 elnn0z 11390 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  <->  ( k  e.  ZZ  /\  0  <_ 
k ) )
3837simplbi2 655 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ZZ  ->  (
0  <_  k  ->  k  e.  NN0 ) )
3938adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( 0  <_  k  ->  k  e.  NN0 )
)
4036, 39syld 47 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  <_  k  ->  k  e.  NN0 )
)
414, 40sylan 488 . . . . . . . . . . . . 13  |-  ( ( A  e.  S  /\  k  e.  ZZ )  ->  ( N  <_  k  ->  k  e.  NN0 )
)
4241impr 649 . . . . . . . . . . . 12  |-  ( ( A  e.  S  /\  ( k  e.  ZZ  /\  N  <_  k )
)  ->  k  e.  NN0 )
4342expcom 451 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  N  <_  k )  -> 
( A  e.  S  ->  k  e.  NN0 )
)
44433adant1 1079 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  ( A  e.  S  ->  k  e.  NN0 ) )
4544ancld 576 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  ( A  e.  S  ->  ( A  e.  S  /\  k  e.  NN0 ) ) )
46 nn0uz 11722 . . . . . . . . . . . . 13  |-  NN0  =  ( ZZ>= `  0 )
47 0zd 11389 . . . . . . . . . . . . 13  |-  ( A  e.  S  ->  0  e.  ZZ )
48 id 22 . . . . . . . . . . . . 13  |-  ( A  e.  S  ->  A  e.  S )
4923a1i 11 . . . . . . . . . . . . 13  |-  ( A  e.  S  ->  F : S --> S )
5046, 24, 47, 48, 49algrf 15286 . . . . . . . . . . . 12  |-  ( A  e.  S  ->  R : NN0 --> S )
5150ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  k
)  e.  S )
52 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( R `  k )  ->  ( F `  z )  =  ( F `  ( R `  k ) ) )
5352fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( z  =  ( R `  k )  ->  ( C `  ( F `  z ) )  =  ( C `  ( F `  ( R `  k ) ) ) )
5453neeq1d 2853 . . . . . . . . . . . . . 14  |-  ( z  =  ( R `  k )  ->  (
( C `  ( F `  z )
)  =/=  0  <->  ( C `  ( F `  ( R `  k
) ) )  =/=  0 ) )
55 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( z  =  ( R `  k )  ->  ( C `  z )  =  ( C `  ( R `  k ) ) )
5653, 55breq12d 4666 . . . . . . . . . . . . . 14  |-  ( z  =  ( R `  k )  ->  (
( C `  ( F `  z )
)  <  ( C `  z )  <->  ( C `  ( F `  ( R `  k )
) )  <  ( C `  ( R `  k ) ) ) )
5754, 56imbi12d 334 . . . . . . . . . . . . 13  |-  ( z  =  ( R `  k )  ->  (
( ( C `  ( F `  z ) )  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) )  <->  ( ( C `  ( F `  ( R `  k
) ) )  =/=  0  ->  ( C `  ( F `  ( R `  k )
) )  <  ( C `  ( R `  k ) ) ) ) )
5857, 25vtoclga 3272 . . . . . . . . . . . 12  |-  ( ( R `  k )  e.  S  ->  (
( C `  ( F `  ( R `  k ) ) )  =/=  0  ->  ( C `  ( F `  ( R `  k
) ) )  < 
( C `  ( R `  k )
) ) )
5923, 2algcvgb 15291 . . . . . . . . . . . . 13  |-  ( ( R `  k )  e.  S  ->  (
( ( C `  ( F `  ( R `
 k ) ) )  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  <->  ( (
( C `  ( R `  k )
)  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  /\  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) ) ) )
60 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( C `  ( R `  k ) )  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  /\  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) )  ->  ( ( C `
 ( R `  k ) )  =  0  ->  ( C `  ( F `  ( R `  k )
) )  =  0 ) )
6159, 60syl6bi 243 . . . . . . . . . . . 12  |-  ( ( R `  k )  e.  S  ->  (
( ( C `  ( F `  ( R `
 k ) ) )  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  ->  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) ) )
6258, 61mpd 15 . . . . . . . . . . 11  |-  ( ( R `  k )  e.  S  ->  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) )
6351, 62syl 17 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( C `  ( R `  k ) )  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) )
6446, 24, 47, 48, 49algrp1 15287 . . . . . . . . . . . 12  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  (
k  +  1 ) )  =  ( F `
 ( R `  k ) ) )
6564fveq2d 6195 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( C `  ( R `  ( k  +  1 ) ) )  =  ( C `
 ( F `  ( R `  k ) ) ) )
6665eqeq1d 2624 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( C `  ( R `  ( k  +  1 ) ) )  =  0  <->  ( C `  ( F `  ( R `  k
) ) )  =  0 ) )
6763, 66sylibrd 249 . . . . . . . . 9  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( C `  ( R `  k ) )  =  0  -> 
( C `  ( R `  ( k  +  1 ) ) )  =  0 ) )
6845, 67syl6 35 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  ( A  e.  S  ->  ( ( C `  ( R `  k )
)  =  0  -> 
( C `  ( R `  ( k  +  1 ) ) )  =  0 ) ) )
6968a2d 29 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  (
( A  e.  S  ->  ( C `  ( R `  k )
)  =  0 )  ->  ( A  e.  S  ->  ( C `  ( R `  (
k  +  1 ) ) )  =  0 ) ) )
7010, 14, 18, 22, 27, 69uzind 11469 . . . . . 6  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ  /\  N  <_  K )  ->  ( A  e.  S  ->  ( C `  ( R `
 K ) )  =  0 ) )
71703expib 1268 . . . . 5  |-  ( N  e.  ZZ  ->  (
( K  e.  ZZ  /\  N  <_  K )  ->  ( A  e.  S  ->  ( C `  ( R `  K )
)  =  0 ) ) )
726, 71sylbid 230 . . . 4  |-  ( N  e.  ZZ  ->  ( K  e.  ( ZZ>= `  N )  ->  ( A  e.  S  ->  ( C `  ( R `
 K ) )  =  0 ) ) )
735, 72syl 17 . . 3  |-  ( N  e.  NN0  ->  ( K  e.  ( ZZ>= `  N
)  ->  ( A  e.  S  ->  ( C `
 ( R `  K ) )  =  0 ) ) )
7473com3r 87 . 2  |-  ( A  e.  S  ->  ( N  e.  NN0  ->  ( K  e.  ( ZZ>= `  N )  ->  ( C `  ( R `  K ) )  =  0 ) ) )
754, 74mpd 15 1  |-  ( A  e.  S  ->  ( K  e.  ( ZZ>= `  N )  ->  ( C `  ( R `  K ) )  =  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {csn 4177   class class class wbr 4653    X. cxp 5112    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  algfx  15293  eucalgcvga  15299
  Copyright terms: Public domain W3C validator