MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcn2 Structured version   Visualization version   Unicode version

Theorem bcn2 13106
Description: Binomial coefficient:  N choose  2. (Contributed by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bcn2  |-  ( N  e.  NN0  ->  ( N  _C  2 )  =  ( ( N  x.  ( N  -  1
) )  /  2
) )

Proof of Theorem bcn2
StepHypRef Expression
1 2nn 11185 . . 3  |-  2  e.  NN
2 bcval5 13105 . . 3  |-  ( ( N  e.  NN0  /\  2  e.  NN )  ->  ( N  _C  2
)  =  ( (  seq ( ( N  -  2 )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! `  2 )
) )
31, 2mpan2 707 . 2  |-  ( N  e.  NN0  ->  ( N  _C  2 )  =  ( (  seq (
( N  -  2 )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! ` 
2 ) ) )
4 2m1e1 11135 . . . . . . . 8  |-  ( 2  -  1 )  =  1
54oveq2i 6661 . . . . . . 7  |-  ( ( N  -  2 )  +  ( 2  -  1 ) )  =  ( ( N  - 
2 )  +  1 )
6 nn0cn 11302 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  CC )
7 2cn 11091 . . . . . . . . 9  |-  2  e.  CC
8 ax-1cn 9994 . . . . . . . . 9  |-  1  e.  CC
9 npncan 10302 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  2  e.  CC  /\  1  e.  CC )  ->  (
( N  -  2 )  +  ( 2  -  1 ) )  =  ( N  - 
1 ) )
107, 8, 9mp3an23 1416 . . . . . . . 8  |-  ( N  e.  CC  ->  (
( N  -  2 )  +  ( 2  -  1 ) )  =  ( N  - 
1 ) )
116, 10syl 17 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( N  -  2 )  +  ( 2  -  1 ) )  =  ( N  -  1 ) )
125, 11syl5eqr 2670 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  -  2 )  +  1 )  =  ( N  -  1 ) )
1312seqeq1d 12807 . . . . 5  |-  ( N  e.  NN0  ->  seq (
( N  -  2 )  +  1 ) (  x.  ,  _I  )  =  seq ( N  -  1 ) (  x.  ,  _I  ) )
1413fveq1d 6193 . . . 4  |-  ( N  e.  NN0  ->  (  seq ( ( N  - 
2 )  +  1 ) (  x.  ,  _I  ) `  N )  =  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )
)
15 nn0z 11400 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ZZ )
16 peano2zm 11420 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
1715, 16syl 17 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  -  1 )  e.  ZZ )
18 uzid 11702 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
1915, 18syl 17 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ( ZZ>= `  N )
)
20 npcan 10290 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
216, 8, 20sylancl 694 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  +  1 )  =  N )
2221fveq2d 6195 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ZZ>= `  ( ( N  - 
1 )  +  1 ) )  =  (
ZZ>= `  N ) )
2319, 22eleqtrrd 2704 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ( ZZ>= `  ( ( N  -  1 )  +  1 ) ) )
24 seqm1 12818 . . . . . . 7  |-  ( ( ( N  -  1 )  e.  ZZ  /\  N  e.  ( ZZ>= `  ( ( N  - 
1 )  +  1 ) ) )  -> 
(  seq ( N  - 
1 ) (  x.  ,  _I  ) `  N )  =  ( (  seq ( N  -  1 ) (  x.  ,  _I  ) `  ( N  -  1 ) )  x.  (  _I  `  N ) ) )
2517, 23, 24syl2anc 693 . . . . . 6  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )  =  ( (  seq ( N  -  1 ) (  x.  ,  _I  ) `  ( N  -  1 ) )  x.  (  _I  `  N ) ) )
26 seq1 12814 . . . . . . . . 9  |-  ( ( N  -  1 )  e.  ZZ  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  ( N  -  1 ) )  =  (  _I  `  ( N  -  1
) ) )
2717, 26syl 17 . . . . . . . 8  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  ( N  -  1 ) )  =  (  _I  `  ( N  -  1
) ) )
28 fvi 6255 . . . . . . . . 9  |-  ( ( N  -  1 )  e.  ZZ  ->  (  _I  `  ( N  - 
1 ) )  =  ( N  -  1 ) )
2917, 28syl 17 . . . . . . . 8  |-  ( N  e.  NN0  ->  (  _I 
`  ( N  - 
1 ) )  =  ( N  -  1 ) )
3027, 29eqtrd 2656 . . . . . . 7  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  ( N  -  1 ) )  =  ( N  - 
1 ) )
31 fvi 6255 . . . . . . 7  |-  ( N  e.  NN0  ->  (  _I 
`  N )  =  N )
3230, 31oveq12d 6668 . . . . . 6  |-  ( N  e.  NN0  ->  ( (  seq ( N  - 
1 ) (  x.  ,  _I  ) `  ( N  -  1
) )  x.  (  _I  `  N ) )  =  ( ( N  -  1 )  x.  N ) )
3325, 32eqtrd 2656 . . . . 5  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )  =  ( ( N  -  1 )  x.  N ) )
34 subcl 10280 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  -  1 )  e.  CC )
356, 8, 34sylancl 694 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  -  1 )  e.  CC )
3635, 6mulcomd 10061 . . . . 5  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  x.  N )  =  ( N  x.  ( N  -  1 ) ) )
3733, 36eqtrd 2656 . . . 4  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )  =  ( N  x.  ( N  -  1
) ) )
3814, 37eqtrd 2656 . . 3  |-  ( N  e.  NN0  ->  (  seq ( ( N  - 
2 )  +  1 ) (  x.  ,  _I  ) `  N )  =  ( N  x.  ( N  -  1
) ) )
39 fac2 13066 . . . 4  |-  ( ! `
 2 )  =  2
4039a1i 11 . . 3  |-  ( N  e.  NN0  ->  ( ! `
 2 )  =  2 )
4138, 40oveq12d 6668 . 2  |-  ( N  e.  NN0  ->  ( (  seq ( ( N  -  2 )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! `  2 )
)  =  ( ( N  x.  ( N  -  1 ) )  /  2 ) )
423, 41eqtrd 2656 1  |-  ( N  e.  NN0  ->  ( N  _C  2 )  =  ( ( N  x.  ( N  -  1
) )  /  2
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    _I cid 5023   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687    seqcseq 12801   !cfa 13060    _C cbc 13089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-fac 13061  df-bc 13090
This theorem is referenced by:  bcp1m1  13107  bpoly3  14789
  Copyright terms: Public domain W3C validator