MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcval5 Structured version   Visualization version   Unicode version

Theorem bcval5 13105
Description: Write out the top and bottom parts of the binomial coefficient  ( N  _C  K )  =  ( N  x.  ( N  -  1 )  x. 
...  x.  ( ( N  -  K )  +  1 ) )  /  K ! explicitly. In this form, it is valid even for  N  <  K, although it is no longer valid for nonpositive  K. (Contributed by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bcval5  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  ( N  _C  K
)  =  ( (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! `  K )
) )

Proof of Theorem bcval5
Dummy variables  x  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcval2 13092 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
21adantl 482 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  ( ( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) )
3 mulcl 10020 . . . . . . . . 9  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  x.  x
)  e.  CC )
43adantl 482 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  ( k  e.  CC  /\  x  e.  CC ) )  -> 
( k  x.  x
)  e.  CC )
5 mulass 10024 . . . . . . . . 9  |-  ( ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( k  x.  x
)  x.  y )  =  ( k  x.  ( x  x.  y
) ) )
65adantl 482 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC ) )  -> 
( ( k  x.  x )  x.  y
)  =  ( k  x.  ( x  x.  y ) ) )
7 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  K  e.  NN )
8 elfzuz3 12339 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 0 ... N )  ->  N  e.  ( ZZ>= `  K )
)
98adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  ( ZZ>= `  K )
)
10 eluznn 11758 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  N  e.  ( ZZ>= `  K ) )  ->  N  e.  NN )
117, 9, 10syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  NN )
1211adantrr 753 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  N  e.  NN )
13 simplr 792 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  K  e.  NN )
14 nnre 11027 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  RR )
15 nnrp 11842 . . . . . . . . . . . 12  |-  ( K  e.  NN  ->  K  e.  RR+ )
16 ltsubrp 11866 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  K  e.  RR+ )  -> 
( N  -  K
)  <  N )
1714, 15, 16syl2an 494 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  K  e.  NN )  ->  ( N  -  K
)  <  N )
1812, 13, 17syl2anc 693 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  ( N  -  K )  <  N )
1912nnzd 11481 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  N  e.  ZZ )
20 nnz 11399 . . . . . . . . . . . . 13  |-  ( K  e.  NN  ->  K  e.  ZZ )
2120ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  K  e.  ZZ )
2219, 21zsubcld 11487 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  ( N  -  K )  e.  ZZ )
23 zltp1le 11427 . . . . . . . . . . 11  |-  ( ( ( N  -  K
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  -  K )  <  N  <->  ( ( N  -  K
)  +  1 )  <_  N ) )
2422, 19, 23syl2anc 693 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  (
( N  -  K
)  <  N  <->  ( ( N  -  K )  +  1 )  <_  N ) )
2518, 24mpbid 222 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  (
( N  -  K
)  +  1 )  <_  N )
2622peano2zd 11485 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  (
( N  -  K
)  +  1 )  e.  ZZ )
27 eluz 11701 . . . . . . . . . 10  |-  ( ( ( ( N  -  K )  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  ( ( N  -  K )  +  1 ) )  <->  ( ( N  -  K )  +  1 )  <_  N ) )
2826, 19, 27syl2anc 693 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  ( N  e.  ( ZZ>= `  ( ( N  -  K )  +  1 ) )  <->  ( ( N  -  K )  +  1 )  <_  N ) )
2925, 28mpbird 247 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  N  e.  ( ZZ>= `  ( ( N  -  K )  +  1 ) ) )
30 simprr 796 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  ( N  -  K )  e.  NN )
31 nnuz 11723 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
3230, 31syl6eleq 2711 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  ( N  -  K )  e.  ( ZZ>= `  1 )
)
33 fvi 6255 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... N )  ->  (  _I  `  k )  =  k )
34 elfzelz 12342 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... N )  ->  k  e.  ZZ )
3534zcnd 11483 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... N )  ->  k  e.  CC )
3633, 35eqeltrd 2701 . . . . . . . . 9  |-  ( k  e.  ( 1 ... N )  ->  (  _I  `  k )  e.  CC )
3736adantl 482 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  k  e.  ( 1 ... N
) )  ->  (  _I  `  k )  e.  CC )
384, 6, 29, 32, 37seqsplit 12834 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  (  seq 1 (  x.  ,  _I  ) `  N )  =  ( (  seq 1 (  x.  ,  _I  ) `  ( N  -  K ) )  x.  (  seq (
( N  -  K
)  +  1 ) (  x.  ,  _I  ) `  N )
) )
39 facnn 13062 . . . . . . . 8  |-  ( N  e.  NN  ->  ( ! `  N )  =  (  seq 1
(  x.  ,  _I  ) `  N )
)
4012, 39syl 17 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  ( ! `  N )  =  (  seq 1
(  x.  ,  _I  ) `  N )
)
41 facnn 13062 . . . . . . . . 9  |-  ( ( N  -  K )  e.  NN  ->  ( ! `  ( N  -  K ) )  =  (  seq 1 (  x.  ,  _I  ) `  ( N  -  K
) ) )
4230, 41syl 17 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  ( ! `  ( N  -  K ) )  =  (  seq 1 (  x.  ,  _I  ) `  ( N  -  K
) ) )
4342oveq1d 6665 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  (
( ! `  ( N  -  K )
)  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ) `  N ) )  =  ( (  seq 1 (  x.  ,  _I  ) `  ( N  -  K
) )  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ) `  N ) ) )
4438, 40, 433eqtr4d 2666 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  ( ! `  N )  =  ( ( ! `
 ( N  -  K ) )  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ) `  N ) ) )
4544expr 643 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  K )  e.  NN  ->  ( ! `  N )  =  ( ( ! `  ( N  -  K )
)  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ) `  N ) ) ) )
46 simpll 790 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  NN0 )
47 faccl 13070 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
48 nncn 11028 . . . . . . . . 9  |-  ( ( ! `  N )  e.  NN  ->  ( ! `  N )  e.  CC )
4946, 47, 483syl 18 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  e.  CC )
5049mulid2d 10058 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( 1  x.  ( ! `  N ) )  =  ( ! `  N
) )
5111, 39syl 17 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  =  (  seq 1 (  x.  ,  _I  ) `  N ) )
5251oveq2d 6666 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( 1  x.  ( ! `  N ) )  =  ( 1  x.  (  seq 1 (  x.  ,  _I  ) `  N ) ) )
5350, 52eqtr3d 2658 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  =  ( 1  x.  (  seq 1 (  x.  ,  _I  ) `  N ) ) )
54 fveq2 6191 . . . . . . . . 9  |-  ( ( N  -  K )  =  0  ->  ( ! `  ( N  -  K ) )  =  ( ! `  0
) )
55 fac0 13063 . . . . . . . . 9  |-  ( ! `
 0 )  =  1
5654, 55syl6eq 2672 . . . . . . . 8  |-  ( ( N  -  K )  =  0  ->  ( ! `  ( N  -  K ) )  =  1 )
57 oveq1 6657 . . . . . . . . . . 11  |-  ( ( N  -  K )  =  0  ->  (
( N  -  K
)  +  1 )  =  ( 0  +  1 ) )
58 0p1e1 11132 . . . . . . . . . . 11  |-  ( 0  +  1 )  =  1
5957, 58syl6eq 2672 . . . . . . . . . 10  |-  ( ( N  -  K )  =  0  ->  (
( N  -  K
)  +  1 )  =  1 )
6059seqeq1d 12807 . . . . . . . . 9  |-  ( ( N  -  K )  =  0  ->  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  )  =  seq 1 (  x.  ,  _I  ) )
6160fveq1d 6193 . . . . . . . 8  |-  ( ( N  -  K )  =  0  ->  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ) `  N )  =  (  seq 1
(  x.  ,  _I  ) `  N )
)
6256, 61oveq12d 6668 . . . . . . 7  |-  ( ( N  -  K )  =  0  ->  (
( ! `  ( N  -  K )
)  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ) `  N ) )  =  ( 1  x.  (  seq 1
(  x.  ,  _I  ) `  N )
) )
6362eqeq2d 2632 . . . . . 6  |-  ( ( N  -  K )  =  0  ->  (
( ! `  N
)  =  ( ( ! `  ( N  -  K ) )  x.  (  seq (
( N  -  K
)  +  1 ) (  x.  ,  _I  ) `  N )
)  <->  ( ! `  N )  =  ( 1  x.  (  seq 1 (  x.  ,  _I  ) `  N ) ) ) )
6453, 63syl5ibrcom 237 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  K )  =  0  ->  ( ! `  N )  =  ( ( ! `
 ( N  -  K ) )  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ) `  N ) ) ) )
65 fznn0sub 12373 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  ( N  -  K )  e.  NN0 )
6665adantl 482 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  e.  NN0 )
67 elnn0 11294 . . . . . 6  |-  ( ( N  -  K )  e.  NN0  <->  ( ( N  -  K )  e.  NN  \/  ( N  -  K )  =  0 ) )
6866, 67sylib 208 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  K )  e.  NN  \/  ( N  -  K )  =  0 ) )
6945, 64, 68mpjaod 396 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  =  ( ( ! `  ( N  -  K )
)  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ) `  N ) ) )
7069oveq1d 6665 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ( ! `  N )  /  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) )  =  ( ( ( ! `
 ( N  -  K ) )  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ) `  N ) )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
71 eqid 2622 . . . . . 6  |-  ( ZZ>= `  ( ( N  -  K )  +  1 ) )  =  (
ZZ>= `  ( ( N  -  K )  +  1 ) )
72 nn0z 11400 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  ZZ )
73 zsubcl 11419 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  -  K
)  e.  ZZ )
7472, 20, 73syl2an 494 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  ( N  -  K
)  e.  ZZ )
7574peano2zd 11485 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  ( ( N  -  K )  +  1 )  e.  ZZ )
7675adantr 481 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  K )  +  1 )  e.  ZZ )
77 fvi 6255 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  (
( N  -  K
)  +  1 ) )  ->  (  _I  `  k )  =  k )
78 eluzelcn 11699 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  (
( N  -  K
)  +  1 ) )  ->  k  e.  CC )
7977, 78eqeltrd 2701 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  (
( N  -  K
)  +  1 ) )  ->  (  _I  `  k )  e.  CC )
8079adantl 482 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N
) )  /\  k  e.  ( ZZ>= `  ( ( N  -  K )  +  1 ) ) )  ->  (  _I  `  k )  e.  CC )
813adantl 482 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N
) )  /\  (
k  e.  CC  /\  x  e.  CC )
)  ->  ( k  x.  x )  e.  CC )
8271, 76, 80, 81seqf 12822 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  seq (
( N  -  K
)  +  1 ) (  x.  ,  _I  ) : ( ZZ>= `  (
( N  -  K
)  +  1 ) ) --> CC )
8311, 7, 17syl2anc 693 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  <  N
)
8474adantr 481 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  e.  ZZ )
8511nnzd 11481 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  ZZ )
8684, 85, 23syl2anc 693 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  K )  <  N  <->  ( ( N  -  K )  +  1 )  <_  N
) )
8783, 86mpbid 222 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  K )  +  1 )  <_  N )
8876, 85, 27syl2anc 693 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( N  e.  ( ZZ>= `  ( ( N  -  K )  +  1 ) )  <-> 
( ( N  -  K )  +  1 )  <_  N )
)
8987, 88mpbird 247 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  ( ZZ>= `  ( ( N  -  K )  +  1 ) ) )
9082, 89ffvelrnd 6360 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ) `  N )  e.  CC )
91 elfznn0 12433 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
9291adantl 482 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  K  e.  NN0 )
93 faccl 13070 . . . . . 6  |-  ( K  e.  NN0  ->  ( ! `
 K )  e.  NN )
9492, 93syl 17 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  K )  e.  NN )
9594nncnd 11036 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  K )  e.  CC )
96 faccl 13070 . . . . . 6  |-  ( ( N  -  K )  e.  NN0  ->  ( ! `
 ( N  -  K ) )  e.  NN )
9766, 96syl 17 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  ( N  -  K
) )  e.  NN )
9897nncnd 11036 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  ( N  -  K
) )  e.  CC )
9994nnne0d 11065 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  K )  =/=  0
)
10097nnne0d 11065 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  ( N  -  K
) )  =/=  0
)
10190, 95, 98, 99, 100divcan5d 10827 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( (
( ! `  ( N  -  K )
)  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ) `  N ) )  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) )  =  ( (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! `  K ) ) )
1022, 70, 1013eqtrd 2660 . 2  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  ( (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! `  K )
) )
103 nnnn0 11299 . . . . 5  |-  ( K  e.  NN  ->  K  e.  NN0 )
104103ad2antlr 763 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  K  e.  NN0 )
105 nncn 11028 . . . . 5  |-  ( ( ! `  K )  e.  NN  ->  ( ! `  K )  e.  CC )
106 nnne0 11053 . . . . 5  |-  ( ( ! `  K )  e.  NN  ->  ( ! `  K )  =/=  0 )
107105, 106div0d 10800 . . . 4  |-  ( ( ! `  K )  e.  NN  ->  (
0  /  ( ! `
 K ) )  =  0 )
108104, 93, 1073syl 18 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
0  /  ( ! `
 K ) )  =  0 )
1093adantl 482 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  /\  (
k  e.  CC  /\  x  e.  CC )
)  ->  ( k  x.  x )  e.  CC )
110 fvi 6255 . . . . . . 7  |-  ( k  e.  ( ( ( N  -  K )  +  1 ) ... N )  ->  (  _I  `  k )  =  k )
111 elfzelz 12342 . . . . . . . 8  |-  ( k  e.  ( ( ( N  -  K )  +  1 ) ... N )  ->  k  e.  ZZ )
112111zcnd 11483 . . . . . . 7  |-  ( k  e.  ( ( ( N  -  K )  +  1 ) ... N )  ->  k  e.  CC )
113110, 112eqeltrd 2701 . . . . . 6  |-  ( k  e.  ( ( ( N  -  K )  +  1 ) ... N )  ->  (  _I  `  k )  e.  CC )
114113adantl 482 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  /\  k  e.  ( ( ( N  -  K )  +  1 ) ... N
) )  ->  (  _I  `  k )  e.  CC )
115 mul02 10214 . . . . . 6  |-  ( k  e.  CC  ->  (
0  x.  k )  =  0 )
116115adantl 482 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  /\  k  e.  CC )  ->  (
0  x.  k )  =  0 )
117 mul01 10215 . . . . . 6  |-  ( k  e.  CC  ->  (
k  x.  0 )  =  0 )
118117adantl 482 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  /\  k  e.  CC )  ->  (
k  x.  0 )  =  0 )
119 simpr 477 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  -.  K  e.  ( 0 ... N ) )
120 nn0uz 11722 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
121104, 120syl6eleq 2711 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  K  e.  ( ZZ>= `  0 )
)
12272ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  N  e.  ZZ )
123 elfz5 12334 . . . . . . . . . . 11  |-  ( ( K  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  ( K  e.  ( 0 ... N )  <->  K  <_  N ) )
124121, 122, 123syl2anc 693 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( K  e.  ( 0 ... N )  <->  K  <_  N ) )
125 nn0re 11301 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  N  e.  RR )
126125ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  N  e.  RR )
127 nnre 11027 . . . . . . . . . . . 12  |-  ( K  e.  NN  ->  K  e.  RR )
128127ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  K  e.  RR )
129126, 128subge0d 10617 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
0  <_  ( N  -  K )  <->  K  <_  N ) )
130124, 129bitr4d 271 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( K  e.  ( 0 ... N )  <->  0  <_  ( N  -  K ) ) )
131119, 130mtbid 314 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  -.  0  <_  ( N  -  K ) )
13274adantr 481 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( N  -  K )  e.  ZZ )
133132zred 11482 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( N  -  K )  e.  RR )
134 0re 10040 . . . . . . . . 9  |-  0  e.  RR
135 ltnle 10117 . . . . . . . . 9  |-  ( ( ( N  -  K
)  e.  RR  /\  0  e.  RR )  ->  ( ( N  -  K )  <  0  <->  -.  0  <_  ( N  -  K ) ) )
136133, 134, 135sylancl 694 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
( N  -  K
)  <  0  <->  -.  0  <_  ( N  -  K
) ) )
137131, 136mpbird 247 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( N  -  K )  <  0 )
138 0z 11388 . . . . . . . 8  |-  0  e.  ZZ
139 zltp1le 11427 . . . . . . . 8  |-  ( ( ( N  -  K
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( N  -  K )  <  0  <->  ( ( N  -  K
)  +  1 )  <_  0 ) )
140132, 138, 139sylancl 694 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
( N  -  K
)  <  0  <->  ( ( N  -  K )  +  1 )  <_ 
0 ) )
141137, 140mpbid 222 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
( N  -  K
)  +  1 )  <_  0 )
142 nn0ge0 11318 . . . . . . 7  |-  ( N  e.  NN0  ->  0  <_  N )
143142ad2antrr 762 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  0  <_  N )
144 0zd 11389 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  0  e.  ZZ )
14575adantr 481 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
( N  -  K
)  +  1 )  e.  ZZ )
146 elfz 12332 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  ( ( N  -  K )  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  e.  ( ( ( N  -  K )  +  1 ) ... N )  <-> 
( ( ( N  -  K )  +  1 )  <_  0  /\  0  <_  N ) ) )
147144, 145, 122, 146syl3anc 1326 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
0  e.  ( ( ( N  -  K
)  +  1 ) ... N )  <->  ( (
( N  -  K
)  +  1 )  <_  0  /\  0  <_  N ) ) )
148141, 143, 147mpbir2and 957 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  0  e.  ( ( ( N  -  K )  +  1 ) ... N
) )
149 simpll 790 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  N  e.  NN0 )
150 0cn 10032 . . . . . 6  |-  0  e.  CC
151 fvi 6255 . . . . . 6  |-  ( 0  e.  CC  ->  (  _I  `  0 )  =  0 )
152150, 151mp1i 13 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (  _I  `  0 )  =  0 )
153109, 114, 116, 118, 148, 149, 152seqz 12849 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ) `  N )  =  0 )
154153oveq1d 6665 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
(  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! `  K )
)  =  ( 0  /  ( ! `  K ) ) )
155 bcval3 13093 . . . . 5  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  0 )
15620, 155syl3an2 1360 . . . 4  |-  ( ( N  e.  NN0  /\  K  e.  NN  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  0 )
1571563expa 1265 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( N  _C  K )  =  0 )
158108, 154, 1573eqtr4rd 2667 . 2  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( N  _C  K )  =  ( (  seq (
( N  -  K
)  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! `  K ) ) )
159102, 158pm2.61dan 832 1  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  ( N  _C  K
)  =  ( (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! `  K )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653    _I cid 5023   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326    seqcseq 12801   !cfa 13060    _C cbc 13089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-fac 13061  df-bc 13090
This theorem is referenced by:  bcn2  13106
  Copyright terms: Public domain W3C validator