MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcgr Structured version   Visualization version   Unicode version

Theorem brcgr 25780
Description: The binary relation form of the congruence predicate. The statement  <. A ,  B >.Cgr <. C ,  D >. should be read informally as "the  N dimensional point  A is as far from  B as  C is from  D, or "the line segment  A B is congruent to the line segment  C D. This particular definition is encapsulated by Tarski's axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
brcgr  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.Cgr
<. C ,  D >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
Distinct variable groups:    i, N    A, i    B, i    C, i    D, i

Proof of Theorem brcgr
Dummy variables  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4932 . . 3  |-  <. A ,  B >.  e.  _V
2 opex 4932 . . 3  |-  <. C ,  D >.  e.  _V
3 eleq1 2689 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  ( x  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) ) )
43anbi1d 741 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( ( x  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  <->  ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n
) ) ) ) )
5 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  <. A ,  B >.  ->  ( 1st `  x
)  =  ( 1st `  <. A ,  B >. ) )
65fveq1d 6193 . . . . . . . . 9  |-  ( x  =  <. A ,  B >.  ->  ( ( 1st `  x ) `  i
)  =  ( ( 1st `  <. A ,  B >. ) `  i
) )
7 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  <. A ,  B >.  ->  ( 2nd `  x
)  =  ( 2nd `  <. A ,  B >. ) )
87fveq1d 6193 . . . . . . . . 9  |-  ( x  =  <. A ,  B >.  ->  ( ( 2nd `  x ) `  i
)  =  ( ( 2nd `  <. A ,  B >. ) `  i
) )
96, 8oveq12d 6668 . . . . . . . 8  |-  ( x  =  <. A ,  B >.  ->  ( ( ( 1st `  x ) `
 i )  -  ( ( 2nd `  x
) `  i )
)  =  ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) )
109oveq1d 6665 . . . . . . 7  |-  ( x  =  <. A ,  B >.  ->  ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 ) )
1110sumeq2sdv 14435 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  x ) `
 i )  -  ( ( 2nd `  x
) `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 ) )
1211eqeq1d 2624 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 ) ) )
134, 12anbi12d 747 . . . 4  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  x ) `  i
)  -  ( ( 2nd `  x ) `
 i ) ) ^ 2 )  = 
sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `
 i )  -  ( ( 2nd `  y
) `  i )
) ^ 2 ) )  <->  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) ) ) )
1413rexbidv 3052 . . 3  |-  ( x  =  <. A ,  B >.  ->  ( E. n  e.  NN  ( ( x  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 ) )  <->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) ) ) )
15 eleq1 2689 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  ( y  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) ) )
1615anbi2d 740 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  <->  ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) ) ) )
17 fveq2 6191 . . . . . . . . . 10  |-  ( y  =  <. C ,  D >.  ->  ( 1st `  y
)  =  ( 1st `  <. C ,  D >. ) )
1817fveq1d 6193 . . . . . . . . 9  |-  ( y  =  <. C ,  D >.  ->  ( ( 1st `  y ) `  i
)  =  ( ( 1st `  <. C ,  D >. ) `  i
) )
19 fveq2 6191 . . . . . . . . . 10  |-  ( y  =  <. C ,  D >.  ->  ( 2nd `  y
)  =  ( 2nd `  <. C ,  D >. ) )
2019fveq1d 6193 . . . . . . . . 9  |-  ( y  =  <. C ,  D >.  ->  ( ( 2nd `  y ) `  i
)  =  ( ( 2nd `  <. C ,  D >. ) `  i
) )
2118, 20oveq12d 6668 . . . . . . . 8  |-  ( y  =  <. C ,  D >.  ->  ( ( ( 1st `  y ) `
 i )  -  ( ( 2nd `  y
) `  i )
)  =  ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) )
2221oveq1d 6665 . . . . . . 7  |-  ( y  =  <. C ,  D >.  ->  ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 )  =  ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 ) )
2322sumeq2sdv 14435 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `
 i )  -  ( ( 2nd `  y
) `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )
2423eqeq2d 2632 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) )
2516, 24anbi12d 747 . . . 4  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) )  <-> 
( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) )
2625rexbidv 3052 . . 3  |-  ( y  =  <. C ,  D >.  ->  ( E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) )  <->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) )
27 df-cgr 25773 . . 3  |- Cgr  =  { <. x ,  y >.  |  E. n  e.  NN  ( ( x  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 ) ) }
281, 2, 14, 26, 27brab 4998 . 2  |-  ( <. A ,  B >.Cgr <. C ,  D >.  <->  E. n  e.  NN  (
( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) )
29 opelxp2 5151 . . . . . . . . . . 11  |-  ( <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  ->  D  e.  ( EE `  n ) )
3029ad2antll 765 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  D  e.  ( EE `  n
) )
31 simplrr 801 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  D  e.  ( EE `  N
) )
32 eedimeq 25778 . . . . . . . . . 10  |-  ( ( D  e.  ( EE
`  n )  /\  D  e.  ( EE `  N ) )  ->  n  =  N )
3330, 31, 32syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  n  =  N )
3433adantlr 751 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  n  =  N )
35 oveq2 6658 . . . . . . . . . 10  |-  ( n  =  N  ->  (
1 ... n )  =  ( 1 ... N
) )
3635sumeq1d 14431 . . . . . . . . 9  |-  ( n  =  N  ->  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 ) )
3735sumeq1d 14431 . . . . . . . . 9  |-  ( n  =  N  ->  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) )
3836, 37eqeq12d 2637 . . . . . . . 8  |-  ( n  =  N  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 ) ) )
3934, 38syl 17 . . . . . . 7  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 ) ) )
40 op1stg 7180 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( 1st `  <. A ,  B >. )  =  A )
4140fveq1d 6193 . . . . . . . . . . . 12  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( 1st `  <. A ,  B >. ) `  i )  =  ( A `  i ) )
42 op2ndg 7181 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( 2nd `  <. A ,  B >. )  =  B )
4342fveq1d 6193 . . . . . . . . . . . 12  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( 2nd `  <. A ,  B >. ) `  i )  =  ( B `  i ) )
4441, 43oveq12d 6668 . . . . . . . . . . 11  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) )  =  ( ( A `  i )  -  ( B `  i ) ) )
4544oveq1d 6665 . . . . . . . . . 10  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  ( ( ( A `  i
)  -  ( B `
 i ) ) ^ 2 ) )
4645sumeq2sdv 14435 . . . . . . . . 9  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 ) )
47 op1stg 7180 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( 1st `  <. C ,  D >. )  =  C )
4847fveq1d 6193 . . . . . . . . . . . 12  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( 1st `  <. C ,  D >. ) `  i )  =  ( C `  i ) )
49 op2ndg 7181 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( 2nd `  <. C ,  D >. )  =  D )
5049fveq1d 6193 . . . . . . . . . . . 12  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( 2nd `  <. C ,  D >. ) `  i )  =  ( D `  i ) )
5148, 50oveq12d 6668 . . . . . . . . . . 11  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) )  =  ( ( C `  i )  -  ( D `  i ) ) )
5251oveq1d 6665 . . . . . . . . . 10  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  =  ( ( ( C `  i
)  -  ( D `
 i ) ) ^ 2 ) )
5352sumeq2sdv 14435 . . . . . . . . 9  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )
5446, 53eqeqan12d 2638 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 )  <->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
5554ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
5639, 55bitrd 268 . . . . . 6  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
5756biimpd 219 . . . . 5  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
5857expimpd 629 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  ->  ( ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
5958rexlimdva 3031 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
60 eleenn 25776 . . . . 5  |-  ( D  e.  ( EE `  N )  ->  N  e.  NN )
6160ad2antll 765 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  N  e.  NN )
62 opelxpi 5148 . . . . . . . . 9  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  ->  <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) )
63 opelxpi 5148 . . . . . . . . 9  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  ->  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) )
6462, 63anim12i 590 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) )  /\  <. C ,  D >.  e.  ( ( EE `  N
)  X.  ( EE
`  N ) ) ) )
6564adantr 481 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  ->  ( <. A ,  B >.  e.  ( ( EE `  N
)  X.  ( EE
`  N ) )  /\  <. C ,  D >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) ) ) )
6654biimpar 502 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) )
6765, 66jca 554 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  ->  ( ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) )
68 fveq2 6191 . . . . . . . . . . 11  |-  ( n  =  N  ->  ( EE `  n )  =  ( EE `  N
) )
6968sqxpeqd 5141 . . . . . . . . . 10  |-  ( n  =  N  ->  (
( EE `  n
)  X.  ( EE
`  n ) )  =  ( ( EE
`  N )  X.  ( EE `  N
) ) )
7069eleq2d 2687 . . . . . . . . 9  |-  ( n  =  N  ->  ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) ) )
7169eleq2d 2687 . . . . . . . . 9  |-  ( n  =  N  ->  ( <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) ) )
7270, 71anbi12d 747 . . . . . . . 8  |-  ( n  =  N  ->  (
( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  <->  ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) ) ) )
7372, 38anbi12d 747 . . . . . . 7  |-  ( n  =  N  ->  (
( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) )  <->  ( ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) ) )
7473rspcev 3309 . . . . . 6  |-  ( ( N  e.  NN  /\  ( ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) )  /\  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) )
7567, 74sylan2 491 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) )
7675exp32 631 . . . 4  |-  ( N  e.  NN  ->  (
( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) ) )
7761, 76mpcom 38 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) )
7859, 77impbid 202 . 2  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )  <->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
7928, 78syl5bb 272 1  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.Cgr
<. C ,  D >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   <.cop 4183   class class class wbr 4653    X. cxp 5112   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   1c1 9937    - cmin 10266   NNcn 11020   2c2 11070   ...cfz 12326   ^cexp 12860   sum_csu 14416   EEcee 25768  Cgrccgr 25770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-sum 14417  df-ee 25771  df-cgr 25773
This theorem is referenced by:  axcgrrflx  25794  axcgrtr  25795  axcgrid  25796  axsegcon  25807  ax5seglem3  25811  ax5seglem6  25814  ax5seg  25818  axlowdimlem17  25838  ecgrtg  25863
  Copyright terms: Public domain W3C validator