MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflt2 Structured version   Visualization version   Unicode version

Theorem cantnflt2 8570
Description: An upper bound on the CNF function. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 29-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s  |-  S  =  dom  ( A CNF  B
)
cantnfs.a  |-  ( ph  ->  A  e.  On )
cantnfs.b  |-  ( ph  ->  B  e.  On )
cantnflt2.f  |-  ( ph  ->  F  e.  S )
cantnflt2.a  |-  ( ph  -> 
(/)  e.  A )
cantnflt2.c  |-  ( ph  ->  C  e.  On )
cantnflt2.s  |-  ( ph  ->  ( F supp  (/) )  C_  C )
Assertion
Ref Expression
cantnflt2  |-  ( ph  ->  ( ( A CNF  B
) `  F )  e.  ( A  ^o  C
) )

Proof of Theorem cantnflt2
Dummy variables  k 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3  |-  S  =  dom  ( A CNF  B
)
2 cantnfs.a . . 3  |-  ( ph  ->  A  e.  On )
3 cantnfs.b . . 3  |-  ( ph  ->  B  e.  On )
4 eqid 2622 . . 3  |- OrdIso (  _E  ,  ( F supp  (/) ) )  = OrdIso (  _E  , 
( F supp  (/) ) )
5 cantnflt2.f . . 3  |-  ( ph  ->  F  e.  S )
6 eqid 2622 . . 3  |- seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( F supp  (/) ) ) `
 k ) )  .o  ( F `  (OrdIso (  _E  ,  ( F supp  (/) ) ) `  k ) ) )  +o  z ) ) ,  (/) )  = seq𝜔 ( ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( F supp  (/) ) ) `  k ) )  .o  ( F `  (OrdIso (  _E  ,  ( F supp 
(/) ) ) `  k ) ) )  +o  z ) ) ,  (/) )
71, 2, 3, 4, 5, 6cantnfval 8565 . 2  |-  ( ph  ->  ( ( A CNF  B
) `  F )  =  (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( F supp  (/) ) ) `
 k ) )  .o  ( F `  (OrdIso (  _E  ,  ( F supp  (/) ) ) `  k ) ) )  +o  z ) ) ,  (/) ) `  dom OrdIso (  _E  ,  ( F supp  (/) ) ) ) )
8 cantnflt2.a . . 3  |-  ( ph  -> 
(/)  e.  A )
9 cantnflt2.c . . . . 5  |-  ( ph  ->  C  e.  On )
10 cantnflt2.s . . . . 5  |-  ( ph  ->  ( F supp  (/) )  C_  C )
119, 10ssexd 4805 . . . 4  |-  ( ph  ->  ( F supp  (/) )  e. 
_V )
124oion 8441 . . . 4  |-  ( ( F supp  (/) )  e.  _V  ->  dom OrdIso (  _E  , 
( F supp  (/) ) )  e.  On )
13 sucidg 5803 . . . 4  |-  ( dom OrdIso (  _E  ,  ( F supp 
(/) ) )  e.  On  ->  dom OrdIso (  _E  ,  ( F supp  (/) ) )  e.  suc  dom OrdIso (  _E  ,  ( F supp  (/) ) ) )
1411, 12, 133syl 18 . . 3  |-  ( ph  ->  dom OrdIso (  _E  , 
( F supp  (/) ) )  e.  suc  dom OrdIso (  _E  ,  ( F supp  (/) ) ) )
151, 2, 3, 4, 5cantnfcl 8564 . . . . . . 7  |-  ( ph  ->  (  _E  We  ( F supp 
(/) )  /\  dom OrdIso (  _E  ,  ( F supp  (/) ) )  e.  om ) )
1615simpld 475 . . . . . 6  |-  ( ph  ->  _E  We  ( F supp  (/) ) )
174oiiso 8442 . . . . . 6  |-  ( ( ( F supp  (/) )  e. 
_V  /\  _E  We  ( F supp  (/) ) )  -> OrdIso (  _E  ,  ( F supp  (/) ) )  Isom  _E  ,  _E  ( dom OrdIso (  _E  ,  ( F supp 
(/) ) ) ,  ( F supp  (/) ) ) )
1811, 16, 17syl2anc 693 . . . . 5  |-  ( ph  -> OrdIso (  _E  ,  ( F supp  (/) ) )  Isom  _E  ,  _E  ( dom OrdIso (  _E  ,  ( F supp 
(/) ) ) ,  ( F supp  (/) ) ) )
19 isof1o 6573 . . . . 5  |-  (OrdIso (  _E  ,  ( F supp  (/) ) ) 
Isom  _E  ,  _E  ( dom OrdIso (  _E  , 
( F supp  (/) ) ) ,  ( F supp  (/) ) )  -> OrdIso (  _E  ,  ( F supp  (/) ) ) : dom OrdIso (  _E  , 
( F supp  (/) ) ) -1-1-onto-> ( F supp  (/) ) )
20 f1ofo 6144 . . . . 5  |-  (OrdIso (  _E  ,  ( F supp  (/) ) ) : dom OrdIso (  _E  , 
( F supp  (/) ) ) -1-1-onto-> ( F supp  (/) )  -> OrdIso (  _E  ,  ( F supp  (/) ) ) : dom OrdIso (  _E  , 
( F supp  (/) ) )
-onto-> ( F supp  (/) ) )
21 foima 6120 . . . . 5  |-  (OrdIso (  _E  ,  ( F supp  (/) ) ) : dom OrdIso (  _E  , 
( F supp  (/) ) )
-onto-> ( F supp  (/) )  -> 
(OrdIso (  _E  , 
( F supp  (/) ) )
" dom OrdIso (  _E  , 
( F supp  (/) ) ) )  =  ( F supp  (/) ) )
2218, 19, 20, 214syl 19 . . . 4  |-  ( ph  ->  (OrdIso (  _E  , 
( F supp  (/) ) )
" dom OrdIso (  _E  , 
( F supp  (/) ) ) )  =  ( F supp  (/) ) )
2322, 10eqsstrd 3639 . . 3  |-  ( ph  ->  (OrdIso (  _E  , 
( F supp  (/) ) )
" dom OrdIso (  _E  , 
( F supp  (/) ) ) )  C_  C )
241, 2, 3, 4, 5, 6, 8, 14, 9, 23cantnflt 8569 . 2  |-  ( ph  ->  (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( F supp  (/) ) ) `
 k ) )  .o  ( F `  (OrdIso (  _E  ,  ( F supp  (/) ) ) `  k ) ) )  +o  z ) ) ,  (/) ) `  dom OrdIso (  _E  ,  ( F supp  (/) ) ) )  e.  ( A  ^o  C
) )
257, 24eqeltrd 2701 1  |-  ( ph  ->  ( ( A CNF  B
) `  F )  e.  ( A  ^o  C
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   (/)c0 3915    _E cep 5028    We wwe 5072   dom cdm 5114   "cima 5117   Oncon0 5723   suc csuc 5725   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   supp csupp 7295  seq𝜔cseqom 7542    +o coa 7557    .o comu 7558    ^o coe 7559  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by:  cantnff  8571  cantnflem1d  8585  cnfcom3lem  8600
  Copyright terms: Public domain W3C validator