MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  causs Structured version   Visualization version   Unicode version

Theorem causs 23096
Description: Cauchy sequence on a metric subspace. (Contributed by NM, 29-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
causs  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> Y )  ->  ( F  e.  ( Cau `  D )  <->  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y
) ) ) ) )

Proof of Theorem causs
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caufpm 23080 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  D ) )  ->  F  e.  ( X  ^pm  CC ) )
2 elfvdm 6220 . . . . . . . . . . 11  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
3 cnex 10017 . . . . . . . . . . 11  |-  CC  e.  _V
4 elpmg 7873 . . . . . . . . . . 11  |-  ( ( X  e.  dom  *Met  /\  CC  e.  _V )  ->  ( F  e.  ( X  ^pm  CC ) 
<->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
52, 3, 4sylancl 694 . . . . . . . . . 10  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  ( X  ^pm  CC )  <->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
65biimpa 501 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( X  ^pm  CC )
)  ->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) )
71, 6syldan 487 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  D ) )  ->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) )
87simprd 479 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  D ) )  ->  F  C_  ( CC  X.  X ) )
9 rnss 5354 . . . . . . 7  |-  ( F 
C_  ( CC  X.  X )  ->  ran  F 
C_  ran  ( CC  X.  X ) )
108, 9syl 17 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  D ) )  ->  ran  F  C_  ran  ( CC  X.  X
) )
11 rnxpss 5566 . . . . . 6  |-  ran  ( CC  X.  X )  C_  X
1210, 11syl6ss 3615 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  D ) )  ->  ran  F  C_  X )
1312adantlr 751 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F : NN
--> Y )  /\  F  e.  ( Cau `  D
) )  ->  ran  F 
C_  X )
14 frn 6053 . . . . 5  |-  ( F : NN --> Y  ->  ran  F  C_  Y )
1514ad2antlr 763 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F : NN
--> Y )  /\  F  e.  ( Cau `  D
) )  ->  ran  F 
C_  Y )
1613, 15ssind 3837 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F : NN
--> Y )  /\  F  e.  ( Cau `  D
) )  ->  ran  F 
C_  ( X  i^i  Y ) )
1716ex 450 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> Y )  ->  ( F  e.  ( Cau `  D )  ->  ran  F 
C_  ( X  i^i  Y ) ) )
18 xmetres 22169 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  ( X  i^i  Y ) ) )
19 caufpm 23080 . . . . . . . . 9  |-  ( ( ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  ( X  i^i  Y
) )  /\  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  F  e.  ( ( X  i^i  Y )  ^pm  CC )
)
2018, 19sylan 488 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y
) ) ) )  ->  F  e.  ( ( X  i^i  Y
)  ^pm  CC )
)
21 inex1g 4801 . . . . . . . . . . 11  |-  ( X  e.  dom  *Met  ->  ( X  i^i  Y
)  e.  _V )
222, 21syl 17 . . . . . . . . . 10  |-  ( D  e.  ( *Met `  X )  ->  ( X  i^i  Y )  e. 
_V )
23 elpmg 7873 . . . . . . . . . 10  |-  ( ( ( X  i^i  Y
)  e.  _V  /\  CC  e.  _V )  -> 
( F  e.  ( ( X  i^i  Y
)  ^pm  CC )  <->  ( Fun  F  /\  F  C_  ( CC  X.  ( X  i^i  Y ) ) ) ) )
2422, 3, 23sylancl 694 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  ( ( X  i^i  Y )  ^pm  CC )  <->  ( Fun  F  /\  F  C_  ( CC 
X.  ( X  i^i  Y ) ) ) ) )
2524biimpa 501 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( ( X  i^i  Y
)  ^pm  CC )
)  ->  ( Fun  F  /\  F  C_  ( CC  X.  ( X  i^i  Y ) ) ) )
2620, 25syldan 487 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y
) ) ) )  ->  ( Fun  F  /\  F  C_  ( CC 
X.  ( X  i^i  Y ) ) ) )
2726simprd 479 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y
) ) ) )  ->  F  C_  ( CC  X.  ( X  i^i  Y ) ) )
28 rnss 5354 . . . . . 6  |-  ( F 
C_  ( CC  X.  ( X  i^i  Y ) )  ->  ran  F  C_  ran  ( CC  X.  ( X  i^i  Y ) ) )
2927, 28syl 17 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y
) ) ) )  ->  ran  F  C_  ran  ( CC  X.  ( X  i^i  Y ) ) )
30 rnxpss 5566 . . . . 5  |-  ran  ( CC  X.  ( X  i^i  Y ) )  C_  ( X  i^i  Y )
3129, 30syl6ss 3615 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y
) ) ) )  ->  ran  F  C_  ( X  i^i  Y ) )
3231ex 450 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  ( Cau `  ( D  |`  ( Y  X.  Y ) ) )  ->  ran  F  C_  ( X  i^i  Y ) ) )
3332adantr 481 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> Y )  ->  ( F  e.  ( Cau `  ( D  |`  ( Y  X.  Y ) ) )  ->  ran  F  C_  ( X  i^i  Y ) ) )
34 ffn 6045 . . . 4  |-  ( F : NN --> Y  ->  F  Fn  NN )
35 df-f 5892 . . . . 5  |-  ( F : NN --> ( X  i^i  Y )  <->  ( F  Fn  NN  /\  ran  F  C_  ( X  i^i  Y
) ) )
3635simplbi2 655 . . . 4  |-  ( F  Fn  NN  ->  ( ran  F  C_  ( X  i^i  Y )  ->  F : NN --> ( X  i^i  Y ) ) )
3734, 36syl 17 . . 3  |-  ( F : NN --> Y  -> 
( ran  F  C_  ( X  i^i  Y )  ->  F : NN --> ( X  i^i  Y ) ) )
38 inss2 3834 . . . . . . . . 9  |-  ( X  i^i  Y )  C_  Y
3938a1i 11 . . . . . . . 8  |-  ( D  e.  ( *Met `  X )  ->  ( X  i^i  Y )  C_  Y )
40 fss 6056 . . . . . . . 8  |-  ( ( F : NN --> ( X  i^i  Y )  /\  ( X  i^i  Y ) 
C_  Y )  ->  F : NN --> Y )
4139, 40sylan2 491 . . . . . . 7  |-  ( ( F : NN --> ( X  i^i  Y )  /\  D  e.  ( *Met `  X ) )  ->  F : NN --> Y )
4241ancoms 469 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  F : NN
--> Y )
43 ffvelrn 6357 . . . . . . . . . . . 12  |-  ( ( F : NN --> Y  /\  y  e.  NN )  ->  ( F `  y
)  e.  Y )
4443adantr 481 . . . . . . . . . . 11  |-  ( ( ( F : NN --> Y  /\  y  e.  NN )  /\  z  e.  (
ZZ>= `  y ) )  ->  ( F `  y )  e.  Y
)
45 eluznn 11758 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN  /\  z  e.  ( ZZ>= `  y ) )  -> 
z  e.  NN )
46 ffvelrn 6357 . . . . . . . . . . . . 13  |-  ( ( F : NN --> Y  /\  z  e.  NN )  ->  ( F `  z
)  e.  Y )
4745, 46sylan2 491 . . . . . . . . . . . 12  |-  ( ( F : NN --> Y  /\  ( y  e.  NN  /\  z  e.  ( ZZ>= `  y ) ) )  ->  ( F `  z )  e.  Y
)
4847anassrs 680 . . . . . . . . . . 11  |-  ( ( ( F : NN --> Y  /\  y  e.  NN )  /\  z  e.  (
ZZ>= `  y ) )  ->  ( F `  z )  e.  Y
)
4944, 48ovresd 6801 . . . . . . . . . 10  |-  ( ( ( F : NN --> Y  /\  y  e.  NN )  /\  z  e.  (
ZZ>= `  y ) )  ->  ( ( F `
 y ) ( D  |`  ( Y  X.  Y ) ) ( F `  z ) )  =  ( ( F `  y ) D ( F `  z ) ) )
5049breq1d 4663 . . . . . . . . 9  |-  ( ( ( F : NN --> Y  /\  y  e.  NN )  /\  z  e.  (
ZZ>= `  y ) )  ->  ( ( ( F `  y ) ( D  |`  ( Y  X.  Y ) ) ( F `  z
) )  <  x  <->  ( ( F `  y
) D ( F `
 z ) )  <  x ) )
5150ralbidva 2985 . . . . . . . 8  |-  ( ( F : NN --> Y  /\  y  e.  NN )  ->  ( A. z  e.  ( ZZ>= `  y )
( ( F `  y ) ( D  |`  ( Y  X.  Y
) ) ( F `
 z ) )  <  x  <->  A. z  e.  ( ZZ>= `  y )
( ( F `  y ) D ( F `  z ) )  <  x ) )
5251rexbidva 3049 . . . . . . 7  |-  ( F : NN --> Y  -> 
( E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( ( F `  y ) ( D  |`  ( Y  X.  Y
) ) ( F `
 z ) )  <  x  <->  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( ( F `  y ) D ( F `  z ) )  <  x ) )
5352ralbidv 2986 . . . . . 6  |-  ( F : NN --> Y  -> 
( A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( ( F `  y ) ( D  |`  ( Y  X.  Y ) ) ( F `  z
) )  <  x  <->  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( ( F `  y ) D ( F `  z ) )  <  x ) )
5442, 53syl 17 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  ( A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( ( F `  y ) ( D  |`  ( Y  X.  Y
) ) ( F `
 z ) )  <  x  <->  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( ( F `  y ) D ( F `  z ) )  <  x ) )
55 nnuz 11723 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
5618adantr 481 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  ( D  |`  ( Y  X.  Y
) )  e.  ( *Met `  ( X  i^i  Y ) ) )
57 1zzd 11408 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  1  e.  ZZ )
58 eqidd 2623 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F : NN
--> ( X  i^i  Y
) )  /\  z  e.  NN )  ->  ( F `  z )  =  ( F `  z ) )
59 eqidd 2623 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F : NN
--> ( X  i^i  Y
) )  /\  y  e.  NN )  ->  ( F `  y )  =  ( F `  y ) )
60 simpr 477 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  F : NN
--> ( X  i^i  Y
) )
6155, 56, 57, 58, 59, 60iscauf 23078 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  ( F  e.  ( Cau `  ( D  |`  ( Y  X.  Y ) ) )  <->  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( ( F `  y ) ( D  |`  ( Y  X.  Y
) ) ( F `
 z ) )  <  x ) )
62 simpl 473 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  D  e.  ( *Met `  X
) )
63 id 22 . . . . . . 7  |-  ( F : NN --> ( X  i^i  Y )  ->  F : NN --> ( X  i^i  Y ) )
64 inss1 3833 . . . . . . . 8  |-  ( X  i^i  Y )  C_  X
6564a1i 11 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  ( X  i^i  Y )  C_  X )
66 fss 6056 . . . . . . 7  |-  ( ( F : NN --> ( X  i^i  Y )  /\  ( X  i^i  Y ) 
C_  X )  ->  F : NN --> X )
6763, 65, 66syl2anr 495 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  F : NN
--> X )
6855, 62, 57, 58, 59, 67iscauf 23078 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  ( F  e.  ( Cau `  D
)  <->  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( ( F `  y ) D ( F `  z ) )  < 
x ) )
6954, 61, 683bitr4rd 301 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  ( F  e.  ( Cau `  D
)  <->  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y
) ) ) ) )
7069ex 450 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( F : NN --> ( X  i^i  Y )  -> 
( F  e.  ( Cau `  D )  <-> 
F  e.  ( Cau `  ( D  |`  ( Y  X.  Y ) ) ) ) ) )
7137, 70sylan9r 690 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> Y )  ->  ( ran  F  C_  ( X  i^i  Y )  ->  ( F  e.  ( Cau `  D )  <->  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y
) ) ) ) ) )
7217, 33, 71pm5.21ndd 369 1  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> Y )  ->  ( F  e.  ( Cau `  D )  <->  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   class class class wbr 4653    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   1c1 9937    < clt 10074   NNcn 11020   ZZ>=cuz 11687   RR+crp 11832   *Metcxmt 19731   Caucca 23051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-z 11378  df-uz 11688  df-rp 11833  df-xneg 11946  df-xadd 11947  df-psmet 19738  df-xmet 19739  df-bl 19741  df-cau 23054
This theorem is referenced by:  minvecolem4a  27733  hhsscms  28136
  Copyright terms: Public domain W3C validator