MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgasa1 Structured version   Visualization version   Unicode version

Theorem tgasa1 25739
Description: Second congruence theorem: ASA. (Angle-Side-Angle): If two pairs of angles of two triangles are equal in measurement, and the included sides are equal in length, then the triangles are congruent. Theorem 11.50 of [Schwabhauser] p. 108. (Contributed by Thierry Arnoux, 15-Aug-2020.)
Hypotheses
Ref Expression
tgsas.p  |-  P  =  ( Base `  G
)
tgsas.m  |-  .-  =  ( dist `  G )
tgsas.i  |-  I  =  (Itv `  G )
tgsas.g  |-  ( ph  ->  G  e. TarskiG )
tgsas.a  |-  ( ph  ->  A  e.  P )
tgsas.b  |-  ( ph  ->  B  e.  P )
tgsas.c  |-  ( ph  ->  C  e.  P )
tgsas.d  |-  ( ph  ->  D  e.  P )
tgsas.e  |-  ( ph  ->  E  e.  P )
tgsas.f  |-  ( ph  ->  F  e.  P )
tgasa.l  |-  L  =  (LineG `  G )
tgasa.1  |-  ( ph  ->  -.  ( C  e.  ( A L B )  \/  A  =  B ) )
tgasa.2  |-  ( ph  ->  ( A  .-  B
)  =  ( D 
.-  E ) )
tgasa.3  |-  ( ph  ->  <" A B C "> (cgrA `  G ) <" D E F "> )
tgasa.4  |-  ( ph  ->  <" C A B "> (cgrA `  G ) <" F D E "> )
Assertion
Ref Expression
tgasa1  |-  ( ph  ->  ( B  .-  C
)  =  ( E 
.-  F ) )

Proof of Theorem tgasa1
Dummy variables  a 
b  f  w  t  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 796 . . 3  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  -> 
( E  .-  f
)  =  ( B 
.-  C ) )
2 tgsas.p . . . . 5  |-  P  =  ( Base `  G
)
3 tgsas.i . . . . 5  |-  I  =  (Itv `  G )
4 tgasa.l . . . . 5  |-  L  =  (LineG `  G )
5 tgsas.g . . . . . 6  |-  ( ph  ->  G  e. TarskiG )
65ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  G  e. TarskiG )
7 tgsas.f . . . . . 6  |-  ( ph  ->  F  e.  P )
87ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  F  e.  P )
9 tgsas.d . . . . . 6  |-  ( ph  ->  D  e.  P )
109ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  D  e.  P )
11 tgsas.e . . . . . 6  |-  ( ph  ->  E  e.  P )
1211ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  E  e.  P )
13 tgsas.m . . . . . . 7  |-  .-  =  ( dist `  G )
14 tgsas.a . . . . . . 7  |-  ( ph  ->  A  e.  P )
15 tgsas.b . . . . . . 7  |-  ( ph  ->  B  e.  P )
16 tgsas.c . . . . . . 7  |-  ( ph  ->  C  e.  P )
17 tgasa.3 . . . . . . 7  |-  ( ph  ->  <" A B C "> (cgrA `  G ) <" D E F "> )
18 tgasa.1 . . . . . . 7  |-  ( ph  ->  -.  ( C  e.  ( A L B )  \/  A  =  B ) )
192, 3, 13, 5, 14, 15, 16, 9, 11, 7, 17, 4, 18cgrancol 25720 . . . . . 6  |-  ( ph  ->  -.  ( F  e.  ( D L E )  \/  D  =  E ) )
2019ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  -.  ( F  e.  ( D L E )  \/  D  =  E ) )
21 eqid 2622 . . . . . 6  |-  (hlG `  G )  =  (hlG
`  G )
22 simplr 792 . . . . . 6  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  -> 
f  e.  P )
2316ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  C  e.  P )
2414ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  A  e.  P )
2515ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  B  e.  P )
2618ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  -.  ( C  e.  ( A L B )  \/  A  =  B ) )
276adantr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  P )  /\  ( f ( (hlG
`  G ) `  E ) F  /\  ( E  .-  f )  =  ( B  .-  C ) ) )  /\  ( E  e.  ( D L F )  \/  D  =  F ) )  ->  G  e. TarskiG )
2810adantr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  P )  /\  ( f ( (hlG
`  G ) `  E ) F  /\  ( E  .-  f )  =  ( B  .-  C ) ) )  /\  ( E  e.  ( D L F )  \/  D  =  F ) )  ->  D  e.  P )
2912adantr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  P )  /\  ( f ( (hlG
`  G ) `  E ) F  /\  ( E  .-  f )  =  ( B  .-  C ) ) )  /\  ( E  e.  ( D L F )  \/  D  =  F ) )  ->  E  e.  P )
308adantr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  P )  /\  ( f ( (hlG
`  G ) `  E ) F  /\  ( E  .-  f )  =  ( B  .-  C ) ) )  /\  ( E  e.  ( D L F )  \/  D  =  F ) )  ->  F  e.  P )
3124adantr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  P )  /\  ( f ( (hlG
`  G ) `  E ) F  /\  ( E  .-  f )  =  ( B  .-  C ) ) )  /\  ( E  e.  ( D L F )  \/  D  =  F ) )  ->  A  e.  P )
3225adantr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  P )  /\  ( f ( (hlG
`  G ) `  E ) F  /\  ( E  .-  f )  =  ( B  .-  C ) ) )  /\  ( E  e.  ( D L F )  \/  D  =  F ) )  ->  B  e.  P )
3323adantr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  P )  /\  ( f ( (hlG
`  G ) `  E ) F  /\  ( E  .-  f )  =  ( B  .-  C ) ) )  /\  ( E  e.  ( D L F )  \/  D  =  F ) )  ->  C  e.  P )
342, 3, 5, 21, 14, 15, 16, 9, 11, 7, 17cgracom 25714 . . . . . . . . . 10  |-  ( ph  ->  <" D E F "> (cgrA `  G ) <" A B C "> )
3534ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  P )  /\  ( f ( (hlG
`  G ) `  E ) F  /\  ( E  .-  f )  =  ( B  .-  C ) ) )  /\  ( E  e.  ( D L F )  \/  D  =  F ) )  ->  <" D E F "> (cgrA `  G ) <" A B C "> )
36 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  P )  /\  ( f ( (hlG
`  G ) `  E ) F  /\  ( E  .-  f )  =  ( B  .-  C ) ) )  /\  ( E  e.  ( D L F )  \/  D  =  F ) )  -> 
( E  e.  ( D L F )  \/  D  =  F ) )
372, 4, 3, 27, 28, 30, 29, 36colcom 25453 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  P )  /\  ( f ( (hlG
`  G ) `  E ) F  /\  ( E  .-  f )  =  ( B  .-  C ) ) )  /\  ( E  e.  ( D L F )  \/  D  =  F ) )  -> 
( E  e.  ( F L D )  \/  F  =  D ) )
382, 4, 3, 27, 30, 28, 29, 37colrot1 25454 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  P )  /\  ( f ( (hlG
`  G ) `  E ) F  /\  ( E  .-  f )  =  ( B  .-  C ) ) )  /\  ( E  e.  ( D L F )  \/  D  =  F ) )  -> 
( F  e.  ( D L E )  \/  D  =  E ) )
392, 3, 13, 27, 28, 29, 30, 31, 32, 33, 35, 4, 38cgracol 25719 . . . . . . . 8  |-  ( ( ( ( ph  /\  f  e.  P )  /\  ( f ( (hlG
`  G ) `  E ) F  /\  ( E  .-  f )  =  ( B  .-  C ) ) )  /\  ( E  e.  ( D L F )  \/  D  =  F ) )  -> 
( C  e.  ( A L B )  \/  A  =  B ) )
4026adantr 481 . . . . . . . 8  |-  ( ( ( ( ph  /\  f  e.  P )  /\  ( f ( (hlG
`  G ) `  E ) F  /\  ( E  .-  f )  =  ( B  .-  C ) ) )  /\  ( E  e.  ( D L F )  \/  D  =  F ) )  ->  -.  ( C  e.  ( A L B )  \/  A  =  B ) )
4139, 40pm2.65da 600 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  -.  ( E  e.  ( D L F )  \/  D  =  F ) )
42 eqid 2622 . . . . . . . . . 10  |-  (cgrG `  G )  =  (cgrG `  G )
4317ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  <" A B C "> (cgrA `  G ) <" D E F "> )
44 simprl 794 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  -> 
f ( (hlG `  G ) `  E
) F )
452, 3, 21, 6, 24, 25, 23, 10, 12, 8, 43, 22, 44cgrahl2 25709 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  <" A B C "> (cgrA `  G ) <" D E f "> )
462, 3, 21, 5, 14, 15, 16, 9, 11, 7, 17cgrane1 25704 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  =/=  B )
472, 3, 21, 14, 14, 15, 5, 46hlid 25504 . . . . . . . . . . . . 13  |-  ( ph  ->  A ( (hlG `  G ) `  B
) A )
4847ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  A ( (hlG `  G ) `  B
) A )
492, 3, 21, 5, 14, 15, 16, 9, 11, 7, 17cgrane2 25705 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  =/=  C )
5049necomd 2849 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  =/=  B )
512, 3, 21, 16, 14, 15, 5, 50hlid 25504 . . . . . . . . . . . . 13  |-  ( ph  ->  C ( (hlG `  G ) `  B
) C )
5251ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  C ( (hlG `  G ) `  B
) C )
53 tgasa.2 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  .-  B
)  =  ( D 
.-  E ) )
542, 13, 3, 5, 14, 15, 9, 11, 53tgcgrcomlr 25375 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B  .-  A
)  =  ( E 
.-  D ) )
5554ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  -> 
( B  .-  A
)  =  ( E 
.-  D ) )
561eqcomd 2628 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  -> 
( B  .-  C
)  =  ( E 
.-  f ) )
572, 3, 21, 6, 24, 25, 23, 10, 12, 22, 45, 24, 13, 23, 48, 52, 55, 56cgracgr 25710 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  -> 
( A  .-  C
)  =  ( D 
.-  f ) )
582, 13, 3, 6, 24, 23, 10, 22, 57tgcgrcomlr 25375 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  -> 
( C  .-  A
)  =  ( f 
.-  D ) )
5953ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  -> 
( A  .-  B
)  =  ( D 
.-  E ) )
602, 13, 42, 6, 23, 24, 25, 22, 10, 12, 58, 59, 56trgcgr 25411 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  <" C A B "> (cgrG `  G ) <" f D E "> )
612, 3, 4, 5, 16, 14, 15, 18ncolne1 25520 . . . . . . . . . . . 12  |-  ( ph  ->  C  =/=  A )
6261ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  C  =/=  A )
632, 13, 3, 6, 23, 24, 22, 10, 58, 62tgcgrneq 25378 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  -> 
f  =/=  D )
642, 3, 21, 22, 8, 10, 6, 63hlid 25504 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  -> 
f ( (hlG `  G ) `  D
) f )
652, 3, 21, 5, 9, 11, 7, 14, 15, 16, 34cgrane1 25704 . . . . . . . . . . . 12  |-  ( ph  ->  D  =/=  E )
6665necomd 2849 . . . . . . . . . . 11  |-  ( ph  ->  E  =/=  D )
672, 3, 21, 11, 14, 9, 5, 66hlid 25504 . . . . . . . . . 10  |-  ( ph  ->  E ( (hlG `  G ) `  D
) E )
6867ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  E ( (hlG `  G ) `  D
) E )
692, 3, 21, 6, 23, 24, 25, 22, 10, 12, 22, 12, 60, 64, 68iscgrad 25703 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  <" C A B "> (cgrA `  G ) <" f D E "> )
7065ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  D  =/=  E )
712, 3, 6, 21, 22, 10, 12, 63, 70cgraswap 25712 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  <" f D E "> (cgrA `  G ) <" E D f "> )
722, 3, 6, 21, 23, 24, 25, 22, 10, 12, 69, 12, 10, 22, 71cgratr 25715 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  <" C A B "> (cgrA `  G ) <" E D f "> )
73 tgasa.4 . . . . . . . . 9  |-  ( ph  ->  <" C A B "> (cgrA `  G ) <" F D E "> )
742, 3, 21, 5, 16, 14, 15, 7, 9, 11, 73cgrane3 25706 . . . . . . . . . . 11  |-  ( ph  ->  D  =/=  F )
7574necomd 2849 . . . . . . . . . 10  |-  ( ph  ->  F  =/=  D )
762, 3, 5, 21, 7, 9, 11, 75, 65cgraswap 25712 . . . . . . . . 9  |-  ( ph  ->  <" F D E "> (cgrA `  G ) <" E D F "> )
772, 3, 5, 21, 16, 14, 15, 7, 9, 11, 73, 11, 9, 7, 76cgratr 25715 . . . . . . . 8  |-  ( ph  ->  <" C A B "> (cgrA `  G ) <" E D F "> )
7877ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  <" C A B "> (cgrA `  G ) <" E D F "> )
792, 3, 4, 5, 11, 9, 66tgelrnln 25525 . . . . . . . . 9  |-  ( ph  ->  ( E L D )  e.  ran  L
)
8079ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  -> 
( E L D )  e.  ran  L
)
81 simpl 473 . . . . . . . . . . . 12  |-  ( ( a  =  u  /\  b  =  v )  ->  a  =  u )
82 eqidd 2623 . . . . . . . . . . . 12  |-  ( ( a  =  u  /\  b  =  v )  ->  ( P  \  ( E L D ) )  =  ( P  \ 
( E L D ) ) )
8381, 82eleq12d 2695 . . . . . . . . . . 11  |-  ( ( a  =  u  /\  b  =  v )  ->  ( a  e.  ( P  \  ( E L D ) )  <-> 
u  e.  ( P 
\  ( E L D ) ) ) )
84 simpr 477 . . . . . . . . . . . 12  |-  ( ( a  =  u  /\  b  =  v )  ->  b  =  v )
8584, 82eleq12d 2695 . . . . . . . . . . 11  |-  ( ( a  =  u  /\  b  =  v )  ->  ( b  e.  ( P  \  ( E L D ) )  <-> 
v  e.  ( P 
\  ( E L D ) ) ) )
8683, 85anbi12d 747 . . . . . . . . . 10  |-  ( ( a  =  u  /\  b  =  v )  ->  ( ( a  e.  ( P  \  ( E L D ) )  /\  b  e.  ( P  \  ( E L D ) ) )  <->  ( u  e.  ( P  \  ( E L D ) )  /\  v  e.  ( P  \  ( E L D ) ) ) ) )
87 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( a  =  u  /\  b  =  v )  /\  t  =  w )  ->  t  =  w )
88 simpll 790 . . . . . . . . . . . . 13  |-  ( ( ( a  =  u  /\  b  =  v )  /\  t  =  w )  ->  a  =  u )
89 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( a  =  u  /\  b  =  v )  /\  t  =  w )  ->  b  =  v )
9088, 89oveq12d 6668 . . . . . . . . . . . 12  |-  ( ( ( a  =  u  /\  b  =  v )  /\  t  =  w )  ->  (
a I b )  =  ( u I v ) )
9187, 90eleq12d 2695 . . . . . . . . . . 11  |-  ( ( ( a  =  u  /\  b  =  v )  /\  t  =  w )  ->  (
t  e.  ( a I b )  <->  w  e.  ( u I v ) ) )
9291cbvrexdva 3178 . . . . . . . . . 10  |-  ( ( a  =  u  /\  b  =  v )  ->  ( E. t  e.  ( E L D ) t  e.  ( a I b )  <->  E. w  e.  ( E L D ) w  e.  ( u I v ) ) )
9386, 92anbi12d 747 . . . . . . . . 9  |-  ( ( a  =  u  /\  b  =  v )  ->  ( ( ( a  e.  ( P  \ 
( E L D ) )  /\  b  e.  ( P  \  ( E L D ) ) )  /\  E. t  e.  ( E L D ) t  e.  ( a I b ) )  <->  ( ( u  e.  ( P  \ 
( E L D ) )  /\  v  e.  ( P  \  ( E L D ) ) )  /\  E. w  e.  ( E L D ) w  e.  ( u I v ) ) ) )
9493cbvopabv 4722 . . . . . . . 8  |-  { <. a ,  b >.  |  ( ( a  e.  ( P  \  ( E L D ) )  /\  b  e.  ( P  \  ( E L D ) ) )  /\  E. t  e.  ( E L D ) t  e.  ( a I b ) ) }  =  { <. u ,  v >.  |  ( ( u  e.  ( P  \ 
( E L D ) )  /\  v  e.  ( P  \  ( E L D ) ) )  /\  E. w  e.  ( E L D ) w  e.  ( u I v ) ) }
952, 3, 4, 5, 11, 9, 66tglinerflx1 25528 . . . . . . . . . 10  |-  ( ph  ->  E  e.  ( E L D ) )
9695ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  E  e.  ( E L D ) )
972, 4, 3, 5, 9, 11, 7, 19ncolcom 25456 . . . . . . . . . . 11  |-  ( ph  ->  -.  ( F  e.  ( E L D )  \/  E  =  D ) )
98 pm2.45 412 . . . . . . . . . . 11  |-  ( -.  ( F  e.  ( E L D )  \/  E  =  D )  ->  -.  F  e.  ( E L D ) )
9997, 98syl 17 . . . . . . . . . 10  |-  ( ph  ->  -.  F  e.  ( E L D ) )
10099ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  -.  F  e.  ( E L D ) )
1012, 3, 21, 22, 8, 12, 6, 44hlcomd 25499 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  F ( (hlG `  G ) `  E
) f )
1022, 3, 4, 6, 80, 12, 94, 21, 96, 8, 22, 100, 101hphl 25663 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  F ( (hpG `  G ) `  ( E L D ) ) f )
1032, 3, 4, 6, 80, 8, 94, 22, 102hpgcom 25659 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  -> 
f ( (hpG `  G ) `  ( E L D ) ) F )
1042, 3, 4, 5, 79, 7, 94, 99hpgid 25658 . . . . . . . 8  |-  ( ph  ->  F ( (hpG `  G ) `  ( E L D ) ) F )
105104ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  F ( (hpG `  G ) `  ( E L D ) ) F )
1062, 3, 13, 6, 23, 24, 25, 12, 10, 8, 4, 26, 41, 22, 8, 21, 72, 78, 103, 105acopyeu 25725 . . . . . 6  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  -> 
f ( (hlG `  G ) `  D
) F )
1072, 3, 21, 22, 8, 10, 6, 4, 106hlln 25502 . . . . 5  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  -> 
f  e.  ( F L D ) )
1082, 3, 4, 5, 7, 9, 75tglinerflx1 25528 . . . . . 6  |-  ( ph  ->  F  e.  ( F L D ) )
109108ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  F  e.  ( F L D ) )
1102, 3, 21, 5, 14, 15, 16, 9, 11, 7, 17cgrane4 25707 . . . . . . 7  |-  ( ph  ->  E  =/=  F )
111110ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  E  =/=  F )
1122, 3, 21, 22, 8, 12, 6, 4, 44hlln 25502 . . . . . 6  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  -> 
f  e.  ( F L E ) )
1132, 3, 4, 6, 12, 8, 22, 111, 112lncom 25517 . . . . 5  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  -> 
f  e.  ( E L F ) )
1142, 3, 4, 6, 12, 8, 111tglinerflx2 25529 . . . . 5  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  ->  F  e.  ( E L F ) )
1152, 3, 4, 6, 8, 10, 12, 8, 20, 107, 109, 113, 114tglineinteq 25540 . . . 4  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  -> 
f  =  F )
116115oveq2d 6666 . . 3  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  -> 
( E  .-  f
)  =  ( E 
.-  F ) )
1171, 116eqtr3d 2658 . 2  |-  ( ( ( ph  /\  f  e.  P )  /\  (
f ( (hlG `  G ) `  E
) F  /\  ( E  .-  f )  =  ( B  .-  C
) ) )  -> 
( B  .-  C
)  =  ( E 
.-  F ) )
118110necomd 2849 . . 3  |-  ( ph  ->  F  =/=  E )
1192, 3, 21, 11, 15, 16, 5, 7, 13, 118, 49hlcgrex 25511 . 2  |-  ( ph  ->  E. f  e.  P  ( f ( (hlG
`  G ) `  E ) F  /\  ( E  .-  f )  =  ( B  .-  C ) ) )
120117, 119r19.29a 3078 1  |-  ( ph  ->  ( B  .-  C
)  =  ( E 
.-  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   class class class wbr 4653   {copab 4712   ran crn 5115   ` cfv 5888  (class class class)co 6650   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  cgrGccgrg 25405  hlGchlg 25495  hpGchpg 25649  cgrAccgra 25699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-hlg 25496  df-mir 25548  df-rag 25589  df-perpg 25591  df-hpg 25650  df-mid 25666  df-lmi 25667  df-cgra 25700
This theorem is referenced by:  tgasa  25740
  Copyright terms: Public domain W3C validator