Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climneg Structured version   Visualization version   Unicode version

Theorem climneg 39842
Description: Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climneg.1  |-  F/ k
ph
climneg.2  |-  F/_ k F
climneg.3  |-  Z  =  ( ZZ>= `  M )
climneg.4  |-  ( ph  ->  M  e.  ZZ )
climneg.5  |-  ( ph  ->  F  ~~>  A )
climneg.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
Assertion
Ref Expression
climneg  |-  ( ph  ->  ( k  e.  Z  |-> 
-u ( F `  k ) )  ~~>  -u A
)
Distinct variable group:    k, Z
Allowed substitution hints:    ph( k)    A( k)    F( k)    M( k)

Proof of Theorem climneg
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climneg.1 . . 3  |-  F/ k
ph
2 nfmpt1 4747 . . 3  |-  F/_ k
( k  e.  Z  |-> 
-u 1 )
3 climneg.2 . . 3  |-  F/_ k F
4 nfmpt1 4747 . . 3  |-  F/_ k
( k  e.  Z  |-> 
-u ( F `  k ) )
5 climneg.3 . . 3  |-  Z  =  ( ZZ>= `  M )
6 climneg.4 . . 3  |-  ( ph  ->  M  e.  ZZ )
7 fvex 6201 . . . . . . 7  |-  ( ZZ>= `  M )  e.  _V
85, 7eqeltri 2697 . . . . . 6  |-  Z  e. 
_V
98mptex 6486 . . . . 5  |-  ( k  e.  Z  |->  -u 1
)  e.  _V
109a1i 11 . . . 4  |-  ( ph  ->  ( k  e.  Z  |-> 
-u 1 )  e. 
_V )
11 1cnd 10056 . . . . 5  |-  ( ph  ->  1  e.  CC )
1211negcld 10379 . . . 4  |-  ( ph  -> 
-u 1  e.  CC )
13 eqidd 2623 . . . . . 6  |-  ( j  e.  Z  ->  (
k  e.  Z  |->  -u
1 )  =  ( k  e.  Z  |->  -u
1 ) )
14 eqidd 2623 . . . . . 6  |-  ( ( j  e.  Z  /\  k  =  j )  -> 
-u 1  =  -u
1 )
15 id 22 . . . . . 6  |-  ( j  e.  Z  ->  j  e.  Z )
16 1cnd 10056 . . . . . . 7  |-  ( j  e.  Z  ->  1  e.  CC )
1716negcld 10379 . . . . . 6  |-  ( j  e.  Z  ->  -u 1  e.  CC )
1813, 14, 15, 17fvmptd 6288 . . . . 5  |-  ( j  e.  Z  ->  (
( k  e.  Z  |-> 
-u 1 ) `  j )  =  -u
1 )
1918adantl 482 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  (
( k  e.  Z  |-> 
-u 1 ) `  j )  =  -u
1 )
205, 6, 10, 12, 19climconst 14274 . . 3  |-  ( ph  ->  ( k  e.  Z  |-> 
-u 1 )  ~~>  -u 1
)
218mptex 6486 . . . 4  |-  ( k  e.  Z  |->  -u ( F `  k )
)  e.  _V
2221a1i 11 . . 3  |-  ( ph  ->  ( k  e.  Z  |-> 
-u ( F `  k ) )  e. 
_V )
23 climneg.5 . . 3  |-  ( ph  ->  F  ~~>  A )
24 neg1cn 11124 . . . . . 6  |-  -u 1  e.  CC
25 eqid 2622 . . . . . . 7  |-  ( k  e.  Z  |->  -u 1
)  =  ( k  e.  Z  |->  -u 1
)
2625fvmpt2 6291 . . . . . 6  |-  ( ( k  e.  Z  /\  -u 1  e.  CC )  ->  ( ( k  e.  Z  |->  -u 1
) `  k )  =  -u 1 )
2724, 26mpan2 707 . . . . 5  |-  ( k  e.  Z  ->  (
( k  e.  Z  |-> 
-u 1 ) `  k )  =  -u
1 )
2827, 24syl6eqel 2709 . . . 4  |-  ( k  e.  Z  ->  (
( k  e.  Z  |-> 
-u 1 ) `  k )  e.  CC )
2928adantl 482 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |-> 
-u 1 ) `  k )  e.  CC )
30 climneg.6 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
31 simpr 477 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
3230negcld 10379 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  -u ( F `  k )  e.  CC )
33 eqid 2622 . . . . . 6  |-  ( k  e.  Z  |->  -u ( F `  k )
)  =  ( k  e.  Z  |->  -u ( F `  k )
)
3433fvmpt2 6291 . . . . 5  |-  ( ( k  e.  Z  /\  -u ( F `  k
)  e.  CC )  ->  ( ( k  e.  Z  |->  -u ( F `  k )
) `  k )  =  -u ( F `  k ) )
3531, 32, 34syl2anc 693 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |-> 
-u ( F `  k ) ) `  k )  =  -u ( F `  k ) )
3630mulm1d 10482 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( -u 1  x.  ( F `
 k ) )  =  -u ( F `  k ) )
3727eqcomd 2628 . . . . . 6  |-  ( k  e.  Z  ->  -u 1  =  ( ( k  e.  Z  |->  -u 1
) `  k )
)
3837adantl 482 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  -u 1  =  ( ( k  e.  Z  |->  -u 1
) `  k )
)
3938oveq1d 6665 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( -u 1  x.  ( F `
 k ) )  =  ( ( ( k  e.  Z  |->  -u
1 ) `  k
)  x.  ( F `
 k ) ) )
4035, 36, 393eqtr2d 2662 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |-> 
-u ( F `  k ) ) `  k )  =  ( ( ( k  e.  Z  |->  -u 1 ) `  k )  x.  ( F `  k )
) )
411, 2, 3, 4, 5, 6, 20, 22, 23, 29, 30, 40climmulf 39836 . 2  |-  ( ph  ->  ( k  e.  Z  |-> 
-u ( F `  k ) )  ~~>  ( -u
1  x.  A ) )
42 climcl 14230 . . . 4  |-  ( F  ~~>  A  ->  A  e.  CC )
4323, 42syl 17 . . 3  |-  ( ph  ->  A  e.  CC )
4443mulm1d 10482 . 2  |-  ( ph  ->  ( -u 1  x.  A )  =  -u A )
4541, 44breqtrd 4679 1  |-  ( ph  ->  ( k  e.  Z  |-> 
-u ( F `  k ) )  ~~>  -u A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937    x. cmul 9941   -ucneg 10267   ZZcz 11377   ZZ>=cuz 11687    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  climliminflimsupd  40033
  Copyright terms: Public domain W3C validator