Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climrecf Structured version   Visualization version   Unicode version

Theorem climrecf 39841
Description: A version of climrec 39835 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climrecf.1  |-  F/ k
ph
climrecf.2  |-  F/_ k G
climrecf.3  |-  F/_ k H
climrecf.4  |-  Z  =  ( ZZ>= `  M )
climrecf.5  |-  ( ph  ->  M  e.  ZZ )
climrecf.6  |-  ( ph  ->  G  ~~>  A )
climrecf.7  |-  ( ph  ->  A  =/=  0 )
climrecf.8  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  ( CC  \  {
0 } ) )
climrecf.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( 1  / 
( G `  k
) ) )
climrecf.10  |-  ( ph  ->  H  e.  W )
Assertion
Ref Expression
climrecf  |-  ( ph  ->  H  ~~>  ( 1  /  A ) )
Distinct variable group:    k, Z
Allowed substitution hints:    ph( k)    A( k)    G( k)    H( k)    M( k)    W( k)

Proof of Theorem climrecf
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climrecf.4 . 2  |-  Z  =  ( ZZ>= `  M )
2 climrecf.5 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climrecf.6 . 2  |-  ( ph  ->  G  ~~>  A )
4 climrecf.7 . 2  |-  ( ph  ->  A  =/=  0 )
5 climrecf.1 . . . . 5  |-  F/ k
ph
6 nfv 1843 . . . . 5  |-  F/ k  j  e.  Z
75, 6nfan 1828 . . . 4  |-  F/ k ( ph  /\  j  e.  Z )
8 climrecf.2 . . . . . 6  |-  F/_ k G
9 nfcv 2764 . . . . . 6  |-  F/_ k
j
108, 9nffv 6198 . . . . 5  |-  F/_ k
( G `  j
)
1110nfel1 2779 . . . 4  |-  F/ k ( G `  j
)  e.  ( CC 
\  { 0 } )
127, 11nfim 1825 . . 3  |-  F/ k ( ( ph  /\  j  e.  Z )  ->  ( G `  j
)  e.  ( CC 
\  { 0 } ) )
13 eleq1 2689 . . . . 5  |-  ( k  =  j  ->  (
k  e.  Z  <->  j  e.  Z ) )
1413anbi2d 740 . . . 4  |-  ( k  =  j  ->  (
( ph  /\  k  e.  Z )  <->  ( ph  /\  j  e.  Z ) ) )
15 fveq2 6191 . . . . 5  |-  ( k  =  j  ->  ( G `  k )  =  ( G `  j ) )
1615eleq1d 2686 . . . 4  |-  ( k  =  j  ->  (
( G `  k
)  e.  ( CC 
\  { 0 } )  <->  ( G `  j )  e.  ( CC  \  { 0 } ) ) )
1714, 16imbi12d 334 . . 3  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  Z )  ->  ( G `  k
)  e.  ( CC 
\  { 0 } ) )  <->  ( ( ph  /\  j  e.  Z
)  ->  ( G `  j )  e.  ( CC  \  { 0 } ) ) ) )
18 climrecf.8 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  ( CC  \  {
0 } ) )
1912, 17, 18chvar 2262 . 2  |-  ( (
ph  /\  j  e.  Z )  ->  ( G `  j )  e.  ( CC  \  {
0 } ) )
20 climrecf.3 . . . . . 6  |-  F/_ k H
2120, 9nffv 6198 . . . . 5  |-  F/_ k
( H `  j
)
22 nfcv 2764 . . . . . 6  |-  F/_ k
1
23 nfcv 2764 . . . . . 6  |-  F/_ k  /
2422, 23, 10nfov 6676 . . . . 5  |-  F/_ k
( 1  /  ( G `  j )
)
2521, 24nfeq 2776 . . . 4  |-  F/ k ( H `  j
)  =  ( 1  /  ( G `  j ) )
267, 25nfim 1825 . . 3  |-  F/ k ( ( ph  /\  j  e.  Z )  ->  ( H `  j
)  =  ( 1  /  ( G `  j ) ) )
27 fveq2 6191 . . . . 5  |-  ( k  =  j  ->  ( H `  k )  =  ( H `  j ) )
2815oveq2d 6666 . . . . 5  |-  ( k  =  j  ->  (
1  /  ( G `
 k ) )  =  ( 1  / 
( G `  j
) ) )
2927, 28eqeq12d 2637 . . . 4  |-  ( k  =  j  ->  (
( H `  k
)  =  ( 1  /  ( G `  k ) )  <->  ( H `  j )  =  ( 1  /  ( G `
 j ) ) ) )
3014, 29imbi12d 334 . . 3  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  Z )  ->  ( H `  k
)  =  ( 1  /  ( G `  k ) ) )  <-> 
( ( ph  /\  j  e.  Z )  ->  ( H `  j
)  =  ( 1  /  ( G `  j ) ) ) ) )
31 climrecf.9 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( 1  / 
( G `  k
) ) )
3226, 30, 31chvar 2262 . 2  |-  ( (
ph  /\  j  e.  Z )  ->  ( H `  j )  =  ( 1  / 
( G `  j
) ) )
33 climrecf.10 . 2  |-  ( ph  ->  H  e.  W )
341, 2, 3, 4, 19, 32, 33climrec 39835 1  |-  ( ph  ->  H  ~~>  ( 1  /  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751    =/= wne 2794    \ cdif 3571   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    / cdiv 10684   ZZcz 11377   ZZ>=cuz 11687    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  climdivf  39844
  Copyright terms: Public domain W3C validator