Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnre2csqlem Structured version   Visualization version   Unicode version

Theorem cnre2csqlem 29956
Description: Lemma for cnre2csqima 29957. (Contributed by Thierry Arnoux, 27-Sep-2017.)
Hypotheses
Ref Expression
cnre2csqlem.1  |-  ( G  |`  ( RR  X.  RR ) )  =  ( H  o.  F )
cnre2csqlem.2  |-  F  Fn  ( RR  X.  RR )
cnre2csqlem.3  |-  G  Fn  _V
cnre2csqlem.4  |-  ( x  e.  ( RR  X.  RR )  ->  ( G `
 x )  e.  RR )
cnre2csqlem.5  |-  ( ( x  e.  ran  F  /\  y  e.  ran  F )  ->  ( H `  ( x  -  y
) )  =  ( ( H `  x
)  -  ( H `
 y ) ) )
Assertion
Ref Expression
cnre2csqlem  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  ( Y  e.  ( `' ( G  |`  ( RR 
X.  RR ) )
" ( ( ( G `  X )  -  D ) (,) ( ( G `  X )  +  D
) ) )  -> 
( abs `  ( H `  ( ( F `  Y )  -  ( F `  X ) ) ) )  <  D ) )
Distinct variable groups:    x, y, F    x, G    x, H, y    x, X, y    x, Y, y
Allowed substitution hints:    D( x, y)    G( y)

Proof of Theorem cnre2csqlem
StepHypRef Expression
1 cnre2csqlem.3 . . . . . . 7  |-  G  Fn  _V
2 ssv 3625 . . . . . . 7  |-  ( RR 
X.  RR )  C_  _V
3 fnssres 6004 . . . . . . 7  |-  ( ( G  Fn  _V  /\  ( RR  X.  RR )  C_  _V )  -> 
( G  |`  ( RR  X.  RR ) )  Fn  ( RR  X.  RR ) )
41, 2, 3mp2an 708 . . . . . 6  |-  ( G  |`  ( RR  X.  RR ) )  Fn  ( RR  X.  RR )
5 elpreima 6337 . . . . . 6  |-  ( ( G  |`  ( RR  X.  RR ) )  Fn  ( RR  X.  RR )  ->  ( Y  e.  ( `' ( G  |`  ( RR  X.  RR ) ) " (
( ( G `  X )  -  D
) (,) ( ( G `  X )  +  D ) ) )  <->  ( Y  e.  ( RR  X.  RR )  /\  ( ( G  |`  ( RR  X.  RR ) ) `  Y
)  e.  ( ( ( G `  X
)  -  D ) (,) ( ( G `
 X )  +  D ) ) ) ) )
64, 5mp1i 13 . . . . 5  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  ( Y  e.  ( `' ( G  |`  ( RR 
X.  RR ) )
" ( ( ( G `  X )  -  D ) (,) ( ( G `  X )  +  D
) ) )  <->  ( Y  e.  ( RR  X.  RR )  /\  ( ( G  |`  ( RR  X.  RR ) ) `  Y
)  e.  ( ( ( G `  X
)  -  D ) (,) ( ( G `
 X )  +  D ) ) ) ) )
76simplbda 654 . . . 4  |-  ( ( ( X  e.  ( RR  X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  /\  Y  e.  ( `' ( G  |`  ( RR  X.  RR ) ) " (
( ( G `  X )  -  D
) (,) ( ( G `  X )  +  D ) ) ) )  ->  (
( G  |`  ( RR  X.  RR ) ) `
 Y )  e.  ( ( ( G `
 X )  -  D ) (,) (
( G `  X
)  +  D ) ) )
87ex 450 . . 3  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  ( Y  e.  ( `' ( G  |`  ( RR 
X.  RR ) )
" ( ( ( G `  X )  -  D ) (,) ( ( G `  X )  +  D
) ) )  -> 
( ( G  |`  ( RR  X.  RR ) ) `  Y
)  e.  ( ( ( G `  X
)  -  D ) (,) ( ( G `
 X )  +  D ) ) ) )
9 simp2 1062 . . . . . 6  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  Y  e.  ( RR  X.  RR ) )
10 fvres 6207 . . . . . 6  |-  ( Y  e.  ( RR  X.  RR )  ->  ( ( G  |`  ( RR  X.  RR ) ) `  Y )  =  ( G `  Y ) )
119, 10syl 17 . . . . 5  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  (
( G  |`  ( RR  X.  RR ) ) `
 Y )  =  ( G `  Y
) )
1211eleq1d 2686 . . . 4  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  (
( ( G  |`  ( RR  X.  RR ) ) `  Y
)  e.  ( ( ( G `  X
)  -  D ) (,) ( ( G `
 X )  +  D ) )  <->  ( G `  Y )  e.  ( ( ( G `  X )  -  D
) (,) ( ( G `  X )  +  D ) ) ) )
13 simp1 1061 . . . . . . . . . . . 12  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  X  e.  ( RR  X.  RR ) )
14 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( x  =  X  ->  ( G `  x )  =  ( G `  X ) )
1514eleq1d 2686 . . . . . . . . . . . . 13  |-  ( x  =  X  ->  (
( G `  x
)  e.  RR  <->  ( G `  X )  e.  RR ) )
16 cnre2csqlem.4 . . . . . . . . . . . . 13  |-  ( x  e.  ( RR  X.  RR )  ->  ( G `
 x )  e.  RR )
1715, 16vtoclga 3272 . . . . . . . . . . . 12  |-  ( X  e.  ( RR  X.  RR )  ->  ( G `
 X )  e.  RR )
1813, 17syl 17 . . . . . . . . . . 11  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  ( G `  X )  e.  RR )
19 simp3 1063 . . . . . . . . . . . 12  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  D  e.  RR+ )
2019rpred 11872 . . . . . . . . . . 11  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  D  e.  RR )
2118, 20resubcld 10458 . . . . . . . . . 10  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  (
( G `  X
)  -  D )  e.  RR )
2221rexrd 10089 . . . . . . . . 9  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  (
( G `  X
)  -  D )  e.  RR* )
2318, 20readdcld 10069 . . . . . . . . . 10  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  (
( G `  X
)  +  D )  e.  RR )
2423rexrd 10089 . . . . . . . . 9  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  (
( G `  X
)  +  D )  e.  RR* )
25 elioo2 12216 . . . . . . . . 9  |-  ( ( ( ( G `  X )  -  D
)  e.  RR*  /\  (
( G `  X
)  +  D )  e.  RR* )  ->  (
( G `  Y
)  e.  ( ( ( G `  X
)  -  D ) (,) ( ( G `
 X )  +  D ) )  <->  ( ( G `  Y )  e.  RR  /\  ( ( G `  X )  -  D )  < 
( G `  Y
)  /\  ( G `  Y )  <  (
( G `  X
)  +  D ) ) ) )
2622, 24, 25syl2anc 693 . . . . . . . 8  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  (
( G `  Y
)  e.  ( ( ( G `  X
)  -  D ) (,) ( ( G `
 X )  +  D ) )  <->  ( ( G `  Y )  e.  RR  /\  ( ( G `  X )  -  D )  < 
( G `  Y
)  /\  ( G `  Y )  <  (
( G `  X
)  +  D ) ) ) )
2726biimpa 501 . . . . . . 7  |-  ( ( ( X  e.  ( RR  X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  /\  ( G `  Y )  e.  ( ( ( G `  X )  -  D
) (,) ( ( G `  X )  +  D ) ) )  ->  ( ( G `  Y )  e.  RR  /\  ( ( G `  X )  -  D )  < 
( G `  Y
)  /\  ( G `  Y )  <  (
( G `  X
)  +  D ) ) )
2827simp2d 1074 . . . . . 6  |-  ( ( ( X  e.  ( RR  X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  /\  ( G `  Y )  e.  ( ( ( G `  X )  -  D
) (,) ( ( G `  X )  +  D ) ) )  ->  ( ( G `  X )  -  D )  <  ( G `  Y )
)
2927simp3d 1075 . . . . . 6  |-  ( ( ( X  e.  ( RR  X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  /\  ( G `  Y )  e.  ( ( ( G `  X )  -  D
) (,) ( ( G `  X )  +  D ) ) )  ->  ( G `  Y )  <  (
( G `  X
)  +  D ) )
3028, 29jca 554 . . . . 5  |-  ( ( ( X  e.  ( RR  X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  /\  ( G `  Y )  e.  ( ( ( G `  X )  -  D
) (,) ( ( G `  X )  +  D ) ) )  ->  ( (
( G `  X
)  -  D )  <  ( G `  Y )  /\  ( G `  Y )  <  ( ( G `  X )  +  D
) ) )
3130ex 450 . . . 4  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  (
( G `  Y
)  e.  ( ( ( G `  X
)  -  D ) (,) ( ( G `
 X )  +  D ) )  -> 
( ( ( G `
 X )  -  D )  <  ( G `  Y )  /\  ( G `  Y
)  <  ( ( G `  X )  +  D ) ) ) )
3212, 31sylbid 230 . . 3  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  (
( ( G  |`  ( RR  X.  RR ) ) `  Y
)  e.  ( ( ( G `  X
)  -  D ) (,) ( ( G `
 X )  +  D ) )  -> 
( ( ( G `
 X )  -  D )  <  ( G `  Y )  /\  ( G `  Y
)  <  ( ( G `  X )  +  D ) ) ) )
33 fveq2 6191 . . . . . . 7  |-  ( x  =  Y  ->  ( G `  x )  =  ( G `  Y ) )
3433eleq1d 2686 . . . . . 6  |-  ( x  =  Y  ->  (
( G `  x
)  e.  RR  <->  ( G `  Y )  e.  RR ) )
3534, 16vtoclga 3272 . . . . 5  |-  ( Y  e.  ( RR  X.  RR )  ->  ( G `
 Y )  e.  RR )
369, 35syl 17 . . . 4  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  ( G `  Y )  e.  RR )
37 absdiflt 14057 . . . . 5  |-  ( ( ( G `  Y
)  e.  RR  /\  ( G `  X )  e.  RR  /\  D  e.  RR )  ->  (
( abs `  (
( G `  Y
)  -  ( G `
 X ) ) )  <  D  <->  ( (
( G `  X
)  -  D )  <  ( G `  Y )  /\  ( G `  Y )  <  ( ( G `  X )  +  D
) ) ) )
3837biimprd 238 . . . 4  |-  ( ( ( G `  Y
)  e.  RR  /\  ( G `  X )  e.  RR  /\  D  e.  RR )  ->  (
( ( ( G `
 X )  -  D )  <  ( G `  Y )  /\  ( G `  Y
)  <  ( ( G `  X )  +  D ) )  -> 
( abs `  (
( G `  Y
)  -  ( G `
 X ) ) )  <  D ) )
3936, 18, 20, 38syl3anc 1326 . . 3  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  (
( ( ( G `
 X )  -  D )  <  ( G `  Y )  /\  ( G `  Y
)  <  ( ( G `  X )  +  D ) )  -> 
( abs `  (
( G `  Y
)  -  ( G `
 X ) ) )  <  D ) )
408, 32, 393syld 60 . 2  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  ( Y  e.  ( `' ( G  |`  ( RR 
X.  RR ) )
" ( ( ( G `  X )  -  D ) (,) ( ( G `  X )  +  D
) ) )  -> 
( abs `  (
( G `  Y
)  -  ( G `
 X ) ) )  <  D ) )
41 cnre2csqlem.2 . . . . . . 7  |-  F  Fn  ( RR  X.  RR )
42 fnfvelrn 6356 . . . . . . 7  |-  ( ( F  Fn  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR ) )  -> 
( F `  Y
)  e.  ran  F
)
4341, 9, 42sylancr 695 . . . . . 6  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  ( F `  Y )  e.  ran  F )
44 fnfvelrn 6356 . . . . . . 7  |-  ( ( F  Fn  ( RR 
X.  RR )  /\  X  e.  ( RR  X.  RR ) )  -> 
( F `  X
)  e.  ran  F
)
4541, 13, 44sylancr 695 . . . . . 6  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  ( F `  X )  e.  ran  F )
46 oveq1 6657 . . . . . . . . 9  |-  ( x  =  ( F `  Y )  ->  (
x  -  y )  =  ( ( F `
 Y )  -  y ) )
4746fveq2d 6195 . . . . . . . 8  |-  ( x  =  ( F `  Y )  ->  ( H `  ( x  -  y ) )  =  ( H `  ( ( F `  Y )  -  y
) ) )
48 fveq2 6191 . . . . . . . . 9  |-  ( x  =  ( F `  Y )  ->  ( H `  x )  =  ( H `  ( F `  Y ) ) )
4948oveq1d 6665 . . . . . . . 8  |-  ( x  =  ( F `  Y )  ->  (
( H `  x
)  -  ( H `
 y ) )  =  ( ( H `
 ( F `  Y ) )  -  ( H `  y ) ) )
5047, 49eqeq12d 2637 . . . . . . 7  |-  ( x  =  ( F `  Y )  ->  (
( H `  (
x  -  y ) )  =  ( ( H `  x )  -  ( H `  y ) )  <->  ( H `  ( ( F `  Y )  -  y
) )  =  ( ( H `  ( F `  Y )
)  -  ( H `
 y ) ) ) )
51 oveq2 6658 . . . . . . . . 9  |-  ( y  =  ( F `  X )  ->  (
( F `  Y
)  -  y )  =  ( ( F `
 Y )  -  ( F `  X ) ) )
5251fveq2d 6195 . . . . . . . 8  |-  ( y  =  ( F `  X )  ->  ( H `  ( ( F `  Y )  -  y ) )  =  ( H `  ( ( F `  Y )  -  ( F `  X )
) ) )
53 fveq2 6191 . . . . . . . . 9  |-  ( y  =  ( F `  X )  ->  ( H `  y )  =  ( H `  ( F `  X ) ) )
5453oveq2d 6666 . . . . . . . 8  |-  ( y  =  ( F `  X )  ->  (
( H `  ( F `  Y )
)  -  ( H `
 y ) )  =  ( ( H `
 ( F `  Y ) )  -  ( H `  ( F `
 X ) ) ) )
5552, 54eqeq12d 2637 . . . . . . 7  |-  ( y  =  ( F `  X )  ->  (
( H `  (
( F `  Y
)  -  y ) )  =  ( ( H `  ( F `
 Y ) )  -  ( H `  y ) )  <->  ( H `  ( ( F `  Y )  -  ( F `  X )
) )  =  ( ( H `  ( F `  Y )
)  -  ( H `
 ( F `  X ) ) ) ) )
56 cnre2csqlem.5 . . . . . . 7  |-  ( ( x  e.  ran  F  /\  y  e.  ran  F )  ->  ( H `  ( x  -  y
) )  =  ( ( H `  x
)  -  ( H `
 y ) ) )
5750, 55, 56vtocl2ga 3274 . . . . . 6  |-  ( ( ( F `  Y
)  e.  ran  F  /\  ( F `  X
)  e.  ran  F
)  ->  ( H `  ( ( F `  Y )  -  ( F `  X )
) )  =  ( ( H `  ( F `  Y )
)  -  ( H `
 ( F `  X ) ) ) )
5843, 45, 57syl2anc 693 . . . . 5  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  ( H `  ( ( F `  Y )  -  ( F `  X ) ) )  =  ( ( H `
 ( F `  Y ) )  -  ( H `  ( F `
 X ) ) ) )
59 cnre2csqlem.1 . . . . . . . 8  |-  ( G  |`  ( RR  X.  RR ) )  =  ( H  o.  F )
6059fveq1i 6192 . . . . . . 7  |-  ( ( G  |`  ( RR  X.  RR ) ) `  Y )  =  ( ( H  o.  F
) `  Y )
61 fvco2 6273 . . . . . . . 8  |-  ( ( F  Fn  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR ) )  -> 
( ( H  o.  F ) `  Y
)  =  ( H `
 ( F `  Y ) ) )
6241, 9, 61sylancr 695 . . . . . . 7  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  (
( H  o.  F
) `  Y )  =  ( H `  ( F `  Y ) ) )
6360, 11, 623eqtr3a 2680 . . . . . 6  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  ( G `  Y )  =  ( H `  ( F `  Y ) ) )
6459fveq1i 6192 . . . . . . 7  |-  ( ( G  |`  ( RR  X.  RR ) ) `  X )  =  ( ( H  o.  F
) `  X )
65 fvres 6207 . . . . . . . 8  |-  ( X  e.  ( RR  X.  RR )  ->  ( ( G  |`  ( RR  X.  RR ) ) `  X )  =  ( G `  X ) )
6613, 65syl 17 . . . . . . 7  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  (
( G  |`  ( RR  X.  RR ) ) `
 X )  =  ( G `  X
) )
67 fvco2 6273 . . . . . . . 8  |-  ( ( F  Fn  ( RR 
X.  RR )  /\  X  e.  ( RR  X.  RR ) )  -> 
( ( H  o.  F ) `  X
)  =  ( H `
 ( F `  X ) ) )
6841, 13, 67sylancr 695 . . . . . . 7  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  (
( H  o.  F
) `  X )  =  ( H `  ( F `  X ) ) )
6964, 66, 683eqtr3a 2680 . . . . . 6  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  ( G `  X )  =  ( H `  ( F `  X ) ) )
7063, 69oveq12d 6668 . . . . 5  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  (
( G `  Y
)  -  ( G `
 X ) )  =  ( ( H `
 ( F `  Y ) )  -  ( H `  ( F `
 X ) ) ) )
7158, 70eqtr4d 2659 . . . 4  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  ( H `  ( ( F `  Y )  -  ( F `  X ) ) )  =  ( ( G `
 Y )  -  ( G `  X ) ) )
7271fveq2d 6195 . . 3  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  ( abs `  ( H `  ( ( F `  Y )  -  ( F `  X )
) ) )  =  ( abs `  (
( G `  Y
)  -  ( G `
 X ) ) ) )
7372breq1d 4663 . 2  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  (
( abs `  ( H `  ( ( F `  Y )  -  ( F `  X ) ) ) )  <  D  <->  ( abs `  ( ( G `  Y )  -  ( G `  X )
) )  <  D
) )
7440, 73sylibrd 249 1  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  ( Y  e.  ( `' ( G  |`  ( RR 
X.  RR ) )
" ( ( ( G `  X )  -  D ) (,) ( ( G `  X )  +  D
) ) )  -> 
( abs `  ( H `  ( ( F `  Y )  -  ( F `  X ) ) ) )  <  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    X. cxp 5112   `'ccnv 5113   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   RRcr 9935    + caddc 9939   RR*cxr 10073    < clt 10074    - cmin 10266   RR+crp 11832   (,)cioo 12175   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioo 12179  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  cnre2csqima  29957
  Copyright terms: Public domain W3C validator