| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnre2csqlem | Structured version Visualization version Unicode version | ||
| Description: Lemma for cnre2csqima 29957. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
| Ref | Expression |
|---|---|
| cnre2csqlem.1 |
|
| cnre2csqlem.2 |
|
| cnre2csqlem.3 |
|
| cnre2csqlem.4 |
|
| cnre2csqlem.5 |
|
| Ref | Expression |
|---|---|
| cnre2csqlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre2csqlem.3 |
. . . . . . 7
| |
| 2 | ssv 3625 |
. . . . . . 7
| |
| 3 | fnssres 6004 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | mp2an 708 |
. . . . . 6
|
| 5 | elpreima 6337 |
. . . . . 6
| |
| 6 | 4, 5 | mp1i 13 |
. . . . 5
|
| 7 | 6 | simplbda 654 |
. . . 4
|
| 8 | 7 | ex 450 |
. . 3
|
| 9 | simp2 1062 |
. . . . . 6
| |
| 10 | fvres 6207 |
. . . . . 6
| |
| 11 | 9, 10 | syl 17 |
. . . . 5
|
| 12 | 11 | eleq1d 2686 |
. . . 4
|
| 13 | simp1 1061 |
. . . . . . . . . . . 12
| |
| 14 | fveq2 6191 |
. . . . . . . . . . . . . 14
| |
| 15 | 14 | eleq1d 2686 |
. . . . . . . . . . . . 13
|
| 16 | cnre2csqlem.4 |
. . . . . . . . . . . . 13
| |
| 17 | 15, 16 | vtoclga 3272 |
. . . . . . . . . . . 12
|
| 18 | 13, 17 | syl 17 |
. . . . . . . . . . 11
|
| 19 | simp3 1063 |
. . . . . . . . . . . 12
| |
| 20 | 19 | rpred 11872 |
. . . . . . . . . . 11
|
| 21 | 18, 20 | resubcld 10458 |
. . . . . . . . . 10
|
| 22 | 21 | rexrd 10089 |
. . . . . . . . 9
|
| 23 | 18, 20 | readdcld 10069 |
. . . . . . . . . 10
|
| 24 | 23 | rexrd 10089 |
. . . . . . . . 9
|
| 25 | elioo2 12216 |
. . . . . . . . 9
| |
| 26 | 22, 24, 25 | syl2anc 693 |
. . . . . . . 8
|
| 27 | 26 | biimpa 501 |
. . . . . . 7
|
| 28 | 27 | simp2d 1074 |
. . . . . 6
|
| 29 | 27 | simp3d 1075 |
. . . . . 6
|
| 30 | 28, 29 | jca 554 |
. . . . 5
|
| 31 | 30 | ex 450 |
. . . 4
|
| 32 | 12, 31 | sylbid 230 |
. . 3
|
| 33 | fveq2 6191 |
. . . . . . 7
| |
| 34 | 33 | eleq1d 2686 |
. . . . . 6
|
| 35 | 34, 16 | vtoclga 3272 |
. . . . 5
|
| 36 | 9, 35 | syl 17 |
. . . 4
|
| 37 | absdiflt 14057 |
. . . . 5
| |
| 38 | 37 | biimprd 238 |
. . . 4
|
| 39 | 36, 18, 20, 38 | syl3anc 1326 |
. . 3
|
| 40 | 8, 32, 39 | 3syld 60 |
. 2
|
| 41 | cnre2csqlem.2 |
. . . . . . 7
| |
| 42 | fnfvelrn 6356 |
. . . . . . 7
| |
| 43 | 41, 9, 42 | sylancr 695 |
. . . . . 6
|
| 44 | fnfvelrn 6356 |
. . . . . . 7
| |
| 45 | 41, 13, 44 | sylancr 695 |
. . . . . 6
|
| 46 | oveq1 6657 |
. . . . . . . . 9
| |
| 47 | 46 | fveq2d 6195 |
. . . . . . . 8
|
| 48 | fveq2 6191 |
. . . . . . . . 9
| |
| 49 | 48 | oveq1d 6665 |
. . . . . . . 8
|
| 50 | 47, 49 | eqeq12d 2637 |
. . . . . . 7
|
| 51 | oveq2 6658 |
. . . . . . . . 9
| |
| 52 | 51 | fveq2d 6195 |
. . . . . . . 8
|
| 53 | fveq2 6191 |
. . . . . . . . 9
| |
| 54 | 53 | oveq2d 6666 |
. . . . . . . 8
|
| 55 | 52, 54 | eqeq12d 2637 |
. . . . . . 7
|
| 56 | cnre2csqlem.5 |
. . . . . . 7
| |
| 57 | 50, 55, 56 | vtocl2ga 3274 |
. . . . . 6
|
| 58 | 43, 45, 57 | syl2anc 693 |
. . . . 5
|
| 59 | cnre2csqlem.1 |
. . . . . . . 8
| |
| 60 | 59 | fveq1i 6192 |
. . . . . . 7
|
| 61 | fvco2 6273 |
. . . . . . . 8
| |
| 62 | 41, 9, 61 | sylancr 695 |
. . . . . . 7
|
| 63 | 60, 11, 62 | 3eqtr3a 2680 |
. . . . . 6
|
| 64 | 59 | fveq1i 6192 |
. . . . . . 7
|
| 65 | fvres 6207 |
. . . . . . . 8
| |
| 66 | 13, 65 | syl 17 |
. . . . . . 7
|
| 67 | fvco2 6273 |
. . . . . . . 8
| |
| 68 | 41, 13, 67 | sylancr 695 |
. . . . . . 7
|
| 69 | 64, 66, 68 | 3eqtr3a 2680 |
. . . . . 6
|
| 70 | 63, 69 | oveq12d 6668 |
. . . . 5
|
| 71 | 58, 70 | eqtr4d 2659 |
. . . 4
|
| 72 | 71 | fveq2d 6195 |
. . 3
|
| 73 | 72 | breq1d 4663 |
. 2
|
| 74 | 40, 73 | sylibrd 249 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-ioo 12179 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 |
| This theorem is referenced by: cnre2csqima 29957 |
| Copyright terms: Public domain | W3C validator |