MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnsubrg Structured version   Visualization version   Unicode version

Theorem cnsubrg 19806
Description: There are no subrings of the complex numbers strictly between  RR and  CC. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cnsubrg  |-  ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R )  ->  R  e.  { RR ,  CC } )

Proof of Theorem cnsubrg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssdif0 3942 . . . 4  |-  ( R 
C_  RR  <->  ( R  \  RR )  =  (/) )
2 simpr 477 . . . . . 6  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  R  C_  RR )  ->  R  C_  RR )
3 simplr 792 . . . . . 6  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  R  C_  RR )  ->  RR  C_  R
)
42, 3eqssd 3620 . . . . 5  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  R  C_  RR )  ->  R  =  RR )
54orcd 407 . . . 4  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  R  C_  RR )  ->  ( R  =  RR  \/  R  =  CC ) )
61, 5sylan2br 493 . . 3  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( R  \  RR )  =  (/) )  ->  ( R  =  RR  \/  R  =  CC ) )
7 n0 3931 . . . 4  |-  ( ( R  \  RR )  =/=  (/)  <->  E. x  x  e.  ( R  \  RR ) )
8 simpll 790 . . . . . . . . . 10  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  R  e.  (SubRing ` fld ) )
9 cnfldbas 19750 . . . . . . . . . . 11  |-  CC  =  ( Base ` fld )
109subrgss 18781 . . . . . . . . . 10  |-  ( R  e.  (SubRing ` fld )  ->  R  C_  CC )
118, 10syl 17 . . . . . . . . 9  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  R  C_  CC )
12 replim 13856 . . . . . . . . . . . . 13  |-  ( y  e.  CC  ->  y  =  ( ( Re
`  y )  +  ( _i  x.  (
Im `  y )
) ) )
1312ad2antll 765 . . . . . . . . . . . 12  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  y  =  ( ( Re
`  y )  +  ( _i  x.  (
Im `  y )
) ) )
14 simpll 790 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  R  e.  (SubRing ` fld ) )
15 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  RR  C_  R )
16 recl 13850 . . . . . . . . . . . . . . 15  |-  ( y  e.  CC  ->  (
Re `  y )  e.  RR )
1716ad2antll 765 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  (
Re `  y )  e.  RR )
1815, 17sseldd 3604 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  (
Re `  y )  e.  R )
19 ax-icn 9995 . . . . . . . . . . . . . . . . . . 19  |-  _i  e.  CC
2019a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  _i  e.  CC )
21 eldifi 3732 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( R  \  RR )  ->  x  e.  R )
2221adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  x  e.  R )
2311, 22sseldd 3604 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  x  e.  CC )
24 imcl 13851 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  CC  ->  (
Im `  x )  e.  RR )
2523, 24syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( Im `  x )  e.  RR )
2625recnd 10068 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( Im `  x )  e.  CC )
27 eldifn 3733 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( R  \  RR )  ->  -.  x  e.  RR )
2827adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  -.  x  e.  RR )
29 reim0b 13859 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  CC  ->  (
x  e.  RR  <->  ( Im `  x )  =  0 ) )
3029necon3bbid 2831 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  CC  ->  ( -.  x  e.  RR  <->  ( Im `  x )  =/=  0 ) )
3123, 30syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( -.  x  e.  RR  <->  ( Im `  x )  =/=  0
) )
3228, 31mpbid 222 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( Im `  x )  =/=  0
)
3320, 26, 32divcan4d 10807 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( (
_i  x.  ( Im `  x ) )  / 
( Im `  x
) )  =  _i )
34 mulcl 10020 . . . . . . . . . . . . . . . . . . 19  |-  ( ( _i  e.  CC  /\  ( Im `  x )  e.  CC )  -> 
( _i  x.  (
Im `  x )
)  e.  CC )
3519, 26, 34sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( _i  x.  ( Im `  x
) )  e.  CC )
3635, 26, 32divrecd 10804 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( (
_i  x.  ( Im `  x ) )  / 
( Im `  x
) )  =  ( ( _i  x.  (
Im `  x )
)  x.  ( 1  /  ( Im `  x ) ) ) )
3733, 36eqtr3d 2658 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  _i  =  ( ( _i  x.  ( Im `  x ) )  x.  ( 1  /  ( Im `  x ) ) ) )
3823recld 13934 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( Re `  x )  e.  RR )
3938recnd 10068 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( Re `  x )  e.  CC )
4023, 39negsubd 10398 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( x  +  -u ( Re `  x ) )  =  ( x  -  (
Re `  x )
) )
41 replim 13856 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  CC  ->  x  =  ( ( Re
`  x )  +  ( _i  x.  (
Im `  x )
) ) )
4223, 41syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  x  =  ( ( Re `  x )  +  ( _i  x.  ( Im
`  x ) ) ) )
4342oveq1d 6665 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( x  -  ( Re `  x ) )  =  ( ( ( Re
`  x )  +  ( _i  x.  (
Im `  x )
) )  -  (
Re `  x )
) )
4439, 35pncan2d 10394 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( (
( Re `  x
)  +  ( _i  x.  ( Im `  x ) ) )  -  ( Re `  x ) )  =  ( _i  x.  (
Im `  x )
) )
4540, 43, 443eqtrd 2660 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( x  +  -u ( Re `  x ) )  =  ( _i  x.  (
Im `  x )
) )
46 simplr 792 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  RR  C_  R
)
4738renegcld 10457 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  -u ( Re
`  x )  e.  RR )
4846, 47sseldd 3604 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  -u ( Re
`  x )  e.  R )
49 cnfldadd 19751 . . . . . . . . . . . . . . . . . . . 20  |-  +  =  ( +g  ` fld )
5049subrgacl 18791 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  (SubRing ` fld )  /\  x  e.  R  /\  -u (
Re `  x )  e.  R )  ->  (
x  +  -u (
Re `  x )
)  e.  R )
518, 22, 48, 50syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( x  +  -u ( Re `  x ) )  e.  R )
5245, 51eqeltrrd 2702 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( _i  x.  ( Im `  x
) )  e.  R
)
5325, 32rereccld 10852 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( 1  /  ( Im `  x ) )  e.  RR )
5446, 53sseldd 3604 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( 1  /  ( Im `  x ) )  e.  R )
55 cnfldmul 19752 . . . . . . . . . . . . . . . . . 18  |-  x.  =  ( .r ` fld )
5655subrgmcl 18792 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  (SubRing ` fld )  /\  (
_i  x.  ( Im `  x ) )  e.  R  /\  ( 1  /  ( Im `  x ) )  e.  R )  ->  (
( _i  x.  (
Im `  x )
)  x.  ( 1  /  ( Im `  x ) ) )  e.  R )
578, 52, 54, 56syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( (
_i  x.  ( Im `  x ) )  x.  ( 1  /  (
Im `  x )
) )  e.  R
)
5837, 57eqeltrd 2701 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  _i  e.  R )
5958adantrr 753 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  _i  e.  R )
60 imcl 13851 . . . . . . . . . . . . . . . 16  |-  ( y  e.  CC  ->  (
Im `  y )  e.  RR )
6160ad2antll 765 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  (
Im `  y )  e.  RR )
6215, 61sseldd 3604 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  (
Im `  y )  e.  R )
6355subrgmcl 18792 . . . . . . . . . . . . . 14  |-  ( ( R  e.  (SubRing ` fld )  /\  _i  e.  R  /\  ( Im `  y )  e.  R
)  ->  ( _i  x.  ( Im `  y
) )  e.  R
)
6414, 59, 62, 63syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  (
_i  x.  ( Im `  y ) )  e.  R )
6549subrgacl 18791 . . . . . . . . . . . . 13  |-  ( ( R  e.  (SubRing ` fld )  /\  (
Re `  y )  e.  R  /\  (
_i  x.  ( Im `  y ) )  e.  R )  ->  (
( Re `  y
)  +  ( _i  x.  ( Im `  y ) ) )  e.  R )
6614, 18, 64, 65syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  (
( Re `  y
)  +  ( _i  x.  ( Im `  y ) ) )  e.  R )
6713, 66eqeltrd 2701 . . . . . . . . . . 11  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  y  e.  R )
6867expr 643 . . . . . . . . . 10  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( y  e.  CC  ->  y  e.  R ) )
6968ssrdv 3609 . . . . . . . . 9  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  CC  C_  R
)
7011, 69eqssd 3620 . . . . . . . 8  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  R  =  CC )
7170olcd 408 . . . . . . 7  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( R  =  RR  \/  R  =  CC ) )
7271ex 450 . . . . . 6  |-  ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R )  ->  (
x  e.  ( R 
\  RR )  -> 
( R  =  RR  \/  R  =  CC ) ) )
7372exlimdv 1861 . . . . 5  |-  ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R )  ->  ( E. x  x  e.  ( R  \  RR )  ->  ( R  =  RR  \/  R  =  CC ) ) )
7473imp 445 . . . 4  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  E. x  x  e.  ( R  \  RR ) )  -> 
( R  =  RR  \/  R  =  CC ) )
757, 74sylan2b 492 . . 3  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( R  \  RR )  =/=  (/) )  -> 
( R  =  RR  \/  R  =  CC ) )
766, 75pm2.61dane 2881 . 2  |-  ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R )  ->  ( R  =  RR  \/  R  =  CC )
)
77 elprg 4196 . . 3  |-  ( R  e.  (SubRing ` fld )  ->  ( R  e.  { RR ,  CC }  <->  ( R  =  RR  \/  R  =  CC ) ) )
7877adantr 481 . 2  |-  ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R )  ->  ( R  e.  { RR ,  CC }  <->  ( R  =  RR  \/  R  =  CC ) ) )
7976, 78mpbird 247 1  |-  ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R )  ->  R  e.  { RR ,  CC } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794    \ cdif 3571    C_ wss 3574   (/)c0 3915   {cpr 4179   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   _ici 9938    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267    / cdiv 10684   Recre 13837   Imcim 13838  SubRingcsubrg 18776  ℂfldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-cj 13839  df-re 13840  df-im 13841  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-subg 17591  df-mgp 18490  df-ring 18549  df-subrg 18778  df-cnfld 19747
This theorem is referenced by:  cncdrg  23155
  Copyright terms: Public domain W3C validator