MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsum Structured version   Visualization version   Unicode version

Theorem rplogsum 25216
Description: The sum of  log p  /  p over the primes  p  ==  A (mod  N) is asymptotic to  log x  /  phi ( x )  +  O(1). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 16-Apr-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.u  |-  U  =  (Unit `  Z )
rpvmasum.b  |-  ( ph  ->  A  e.  U )
rpvmasum.t  |-  T  =  ( `' L " { A } )
Assertion
Ref Expression
rplogsum  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p )  /  p
) )  -  ( log `  x ) ) )  e.  O(1) )
Distinct variable groups:    x, p, A    N, p, x    ph, p, x    T, p, x    U, p, x    Z, p, x    L, p, x

Proof of Theorem rplogsum
StepHypRef Expression
1 rpvmasum.z . . 3  |-  Z  =  (ℤ/n `  N )
2 rpvmasum.l . . 3  |-  L  =  ( ZRHom `  Z
)
3 rpvmasum.a . . 3  |-  ( ph  ->  N  e.  NN )
4 rpvmasum.u . . 3  |-  U  =  (Unit `  Z )
5 rpvmasum.b . . 3  |-  ( ph  ->  A  e.  U )
6 rpvmasum.t . . 3  |-  T  =  ( `' L " { A } )
71, 2, 3, 4, 5, 6rpvmasum 25215 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i 
T ) ( (Λ `  p )  /  p
) )  -  ( log `  x ) ) )  e.  O(1) )
83phicld 15477 . . . . . . 7  |-  ( ph  ->  ( phi `  N
)  e.  NN )
98adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( phi `  N )  e.  NN )
109nncnd 11036 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( phi `  N )  e.  CC )
11 fzfid 12772 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
12 inss1 3833 . . . . . . . 8  |-  ( ( 1 ... ( |_
`  x ) )  i^i  T )  C_  ( 1 ... ( |_ `  x ) )
13 ssfi 8180 . . . . . . . 8  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  (
( 1 ... ( |_ `  x ) )  i^i  T )  C_  ( 1 ... ( |_ `  x ) ) )  ->  ( (
1 ... ( |_ `  x ) )  i^i 
T )  e.  Fin )
1411, 12, 13sylancl 694 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
1 ... ( |_ `  x ) )  i^i 
T )  e.  Fin )
15 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) )  ->  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) )
1612, 15sseldi 3601 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) )  ->  p  e.  ( 1 ... ( |_ `  x ) ) )
17 elfznn 12370 . . . . . . . . 9  |-  ( p  e.  ( 1 ... ( |_ `  x
) )  ->  p  e.  NN )
1816, 17syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) )  ->  p  e.  NN )
19 vmacl 24844 . . . . . . . . 9  |-  ( p  e.  NN  ->  (Λ `  p )  e.  RR )
20 nndivre 11056 . . . . . . . . 9  |-  ( ( (Λ `  p )  e.  RR  /\  p  e.  NN )  ->  (
(Λ `  p )  /  p )  e.  RR )
2119, 20mpancom 703 . . . . . . . 8  |-  ( p  e.  NN  ->  (
(Λ `  p )  /  p )  e.  RR )
2218, 21syl 17 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) )  ->  (
(Λ `  p )  /  p )  e.  RR )
2314, 22fsumrecl 14465 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( (Λ `  p
)  /  p )  e.  RR )
2423recnd 10068 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( (Λ `  p
)  /  p )  e.  CC )
2510, 24mulcld 10060 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( phi `  N )  x. 
sum_ p  e.  (
( 1 ... ( |_ `  x ) )  i^i  T ) ( (Λ `  p )  /  p ) )  e.  CC )
26 relogcl 24322 . . . . . 6  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
2726adantl 482 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  RR )
2827recnd 10068 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  CC )
2925, 28subcld 10392 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( phi `  N
)  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( (Λ `  p
)  /  p ) )  -  ( log `  x ) )  e.  CC )
30 inss1 3833 . . . . . . . 8  |-  ( ( 1 ... ( |_
`  x ) )  i^i  ( Prime  i^i  T ) )  C_  (
1 ... ( |_ `  x ) )
31 ssfi 8180 . . . . . . . 8  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  (
( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) )  C_  (
1 ... ( |_ `  x ) ) )  ->  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) )  e.  Fin )
3211, 30, 31sylancl 694 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) )  e.  Fin )
33 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) )  ->  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) )
3430, 33sseldi 3601 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) )  ->  p  e.  ( 1 ... ( |_ `  x ) ) )
3534, 17syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) )  ->  p  e.  NN )
36 nnrp 11842 . . . . . . . . . 10  |-  ( p  e.  NN  ->  p  e.  RR+ )
3736relogcld 24369 . . . . . . . . 9  |-  ( p  e.  NN  ->  ( log `  p )  e.  RR )
3837, 36rerpdivcld 11903 . . . . . . . 8  |-  ( p  e.  NN  ->  (
( log `  p
)  /  p )  e.  RR )
3935, 38syl 17 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) )  ->  ( ( log `  p )  /  p )  e.  RR )
4032, 39fsumrecl 14465 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p
)  /  p )  e.  RR )
4140recnd 10068 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p
)  /  p )  e.  CC )
4210, 41mulcld 10060 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( phi `  N )  x. 
sum_ p  e.  (
( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p )  /  p ) )  e.  CC )
4342, 28subcld 10392 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( phi `  N
)  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p
)  /  p ) )  -  ( log `  x ) )  e.  CC )
4410, 24, 41subdid 10486 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( phi `  N )  x.  ( sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  T ) ( (Λ `  p )  /  p )  -  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p )  /  p
) ) )  =  ( ( ( phi `  N )  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i 
T ) ( (Λ `  p )  /  p
) )  -  (
( phi `  N
)  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p
)  /  p ) ) ) )
4519recnd 10068 . . . . . . . . . . 11  |-  ( p  e.  NN  ->  (Λ `  p )  e.  CC )
46 0re 10040 . . . . . . . . . . . . 13  |-  0  e.  RR
47 ifcl 4130 . . . . . . . . . . . . 13  |-  ( ( ( log `  p
)  e.  RR  /\  0  e.  RR )  ->  if ( p  e. 
Prime ,  ( log `  p ) ,  0 )  e.  RR )
4837, 46, 47sylancl 694 . . . . . . . . . . . 12  |-  ( p  e.  NN  ->  if ( p  e.  Prime ,  ( log `  p
) ,  0 )  e.  RR )
4948recnd 10068 . . . . . . . . . . 11  |-  ( p  e.  NN  ->  if ( p  e.  Prime ,  ( log `  p
) ,  0 )  e.  CC )
5036rpcnne0d 11881 . . . . . . . . . . 11  |-  ( p  e.  NN  ->  (
p  e.  CC  /\  p  =/=  0 ) )
51 divsubdir 10721 . . . . . . . . . . 11  |-  ( ( (Λ `  p )  e.  CC  /\  if ( p  e.  Prime ,  ( log `  p ) ,  0 )  e.  CC  /\  ( p  e.  CC  /\  p  =/=  0 ) )  -> 
( ( (Λ `  p
)  -  if ( p  e.  Prime ,  ( log `  p ) ,  0 ) )  /  p )  =  ( ( (Λ `  p
)  /  p )  -  ( if ( p  e.  Prime ,  ( log `  p ) ,  0 )  /  p ) ) )
5245, 49, 50, 51syl3anc 1326 . . . . . . . . . 10  |-  ( p  e.  NN  ->  (
( (Λ `  p )  -  if ( p  e. 
Prime ,  ( log `  p ) ,  0 ) )  /  p
)  =  ( ( (Λ `  p )  /  p )  -  ( if ( p  e.  Prime ,  ( log `  p
) ,  0 )  /  p ) ) )
5318, 52syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) )  ->  (
( (Λ `  p )  -  if ( p  e. 
Prime ,  ( log `  p ) ,  0 ) )  /  p
)  =  ( ( (Λ `  p )  /  p )  -  ( if ( p  e.  Prime ,  ( log `  p
) ,  0 )  /  p ) ) )
5453sumeq2dv 14433 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( ( (Λ `  p )  -  if ( p  e.  Prime ,  ( log `  p
) ,  0 ) )  /  p )  =  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  T ) ( ( (Λ `  p
)  /  p )  -  ( if ( p  e.  Prime ,  ( log `  p ) ,  0 )  /  p ) ) )
5521recnd 10068 . . . . . . . . . 10  |-  ( p  e.  NN  ->  (
(Λ `  p )  /  p )  e.  CC )
5618, 55syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) )  ->  (
(Λ `  p )  /  p )  e.  CC )
5748, 36rerpdivcld 11903 . . . . . . . . . . 11  |-  ( p  e.  NN  ->  ( if ( p  e.  Prime ,  ( log `  p
) ,  0 )  /  p )  e.  RR )
5857recnd 10068 . . . . . . . . . 10  |-  ( p  e.  NN  ->  ( if ( p  e.  Prime ,  ( log `  p
) ,  0 )  /  p )  e.  CC )
5918, 58syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) )  ->  ( if ( p  e.  Prime ,  ( log `  p
) ,  0 )  /  p )  e.  CC )
6014, 56, 59fsumsub 14520 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( ( (Λ `  p )  /  p
)  -  ( if ( p  e.  Prime ,  ( log `  p
) ,  0 )  /  p ) )  =  ( sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( (Λ `  p
)  /  p )  -  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  T ) ( if ( p  e. 
Prime ,  ( log `  p ) ,  0 )  /  p ) ) )
61 inss2 3834 . . . . . . . . . . . 12  |-  ( Prime  i^i  T )  C_  T
62 sslin 3839 . . . . . . . . . . . 12  |-  ( ( Prime  i^i  T )  C_  T  ->  ( (
1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) )  C_  ( (
1 ... ( |_ `  x ) )  i^i 
T ) )
6361, 62mp1i 13 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) )  C_  ( (
1 ... ( |_ `  x ) )  i^i 
T ) )
6435, 58syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) )  ->  ( if ( p  e.  Prime ,  ( log `  p
) ,  0 )  /  p )  e.  CC )
65 eldif 3584 . . . . . . . . . . . . . . . 16  |-  ( p  e.  ( ( ( 1 ... ( |_
`  x ) )  i^i  T )  \ 
( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) )  <->  ( p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
)  /\  -.  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) ) )
66 incom 3805 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Prime  i^i  T )  =  ( T  i^i  Prime )
6766ineq2i 3811 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1 ... ( |_
`  x ) )  i^i  ( Prime  i^i  T ) )  =  ( ( 1 ... ( |_ `  x ) )  i^i  ( T  i^i  Prime
) )
68 inass 3823 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1 ... ( |_ `  x ) )  i^i  T )  i^i 
Prime )  =  (
( 1 ... ( |_ `  x ) )  i^i  ( T  i^i  Prime
) )
6967, 68eqtr4i 2647 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1 ... ( |_
`  x ) )  i^i  ( Prime  i^i  T ) )  =  ( ( ( 1 ... ( |_ `  x
) )  i^i  T
)  i^i  Prime )
7069elin2 3801 . . . . . . . . . . . . . . . . . 18  |-  ( p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) )  <->  ( p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
)  /\  p  e.  Prime ) )
7170simplbi2 655 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  ( ( 1 ... ( |_ `  x ) )  i^i 
T )  ->  (
p  e.  Prime  ->  p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ) )
7271con3dimp 457 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  ( ( 1 ... ( |_
`  x ) )  i^i  T )  /\  -.  p  e.  (
( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) )  ->  -.  p  e.  Prime )
7365, 72sylbi 207 . . . . . . . . . . . . . . 15  |-  ( p  e.  ( ( ( 1 ... ( |_
`  x ) )  i^i  T )  \ 
( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) )  ->  -.  p  e.  Prime )
7473adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( ( 1 ... ( |_ `  x ) )  i^i 
T )  \  (
( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ) )  ->  -.  p  e.  Prime )
7574iffalsed 4097 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( ( 1 ... ( |_ `  x ) )  i^i 
T )  \  (
( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ) )  ->  if ( p  e.  Prime ,  ( log `  p ) ,  0 )  =  0 )
7675oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( ( 1 ... ( |_ `  x ) )  i^i 
T )  \  (
( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ) )  ->  ( if ( p  e.  Prime ,  ( log `  p ) ,  0 )  /  p )  =  ( 0  /  p ) )
77 eldifi 3732 . . . . . . . . . . . . . 14  |-  ( p  e.  ( ( ( 1 ... ( |_
`  x ) )  i^i  T )  \ 
( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) )  ->  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) )
7877, 18sylan2 491 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( ( 1 ... ( |_ `  x ) )  i^i 
T )  \  (
( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ) )  ->  p  e.  NN )
79 div0 10715 . . . . . . . . . . . . . 14  |-  ( ( p  e.  CC  /\  p  =/=  0 )  -> 
( 0  /  p
)  =  0 )
8050, 79syl 17 . . . . . . . . . . . . 13  |-  ( p  e.  NN  ->  (
0  /  p )  =  0 )
8178, 80syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( ( 1 ... ( |_ `  x ) )  i^i 
T )  \  (
( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ) )  ->  ( 0  /  p )  =  0 )
8276, 81eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( ( 1 ... ( |_ `  x ) )  i^i 
T )  \  (
( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ) )  ->  ( if ( p  e.  Prime ,  ( log `  p ) ,  0 )  /  p )  =  0 )
8363, 64, 82, 14fsumss 14456 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) ( if ( p  e.  Prime ,  ( log `  p ) ,  0 )  /  p )  =  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  T ) ( if ( p  e. 
Prime ,  ( log `  p ) ,  0 )  /  p ) )
84 inss2 3834 . . . . . . . . . . . . . . 15  |-  ( ( 1 ... ( |_
`  x ) )  i^i  ( Prime  i^i  T ) )  C_  ( Prime  i^i  T )
85 inss1 3833 . . . . . . . . . . . . . . 15  |-  ( Prime  i^i  T )  C_  Prime
8684, 85sstri 3612 . . . . . . . . . . . . . 14  |-  ( ( 1 ... ( |_
`  x ) )  i^i  ( Prime  i^i  T ) )  C_  Prime
8786, 33sseldi 3601 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) )  ->  p  e.  Prime )
8887iftrued 4094 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) )  ->  if (
p  e.  Prime ,  ( log `  p ) ,  0 )  =  ( log `  p
) )
8988oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) )  ->  ( if ( p  e.  Prime ,  ( log `  p
) ,  0 )  /  p )  =  ( ( log `  p
)  /  p ) )
9089sumeq2dv 14433 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) ( if ( p  e.  Prime ,  ( log `  p ) ,  0 )  /  p )  =  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p )  /  p ) )
9183, 90eqtr3d 2658 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( if ( p  e.  Prime ,  ( log `  p ) ,  0 )  /  p )  =  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p )  /  p
) )
9291oveq2d 6666 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i 
T ) ( (Λ `  p )  /  p
)  -  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( if ( p  e.  Prime ,  ( log `  p ) ,  0 )  /  p ) )  =  ( sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  T ) ( (Λ `  p )  /  p )  -  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p )  /  p
) ) )
9354, 60, 923eqtrd 2660 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( ( (Λ `  p )  -  if ( p  e.  Prime ,  ( log `  p
) ,  0 ) )  /  p )  =  ( sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( (Λ `  p
)  /  p )  -  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p )  /  p ) ) )
9493oveq2d 6666 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( phi `  N )  x. 
sum_ p  e.  (
( 1 ... ( |_ `  x ) )  i^i  T ) ( ( (Λ `  p
)  -  if ( p  e.  Prime ,  ( log `  p ) ,  0 ) )  /  p ) )  =  ( ( phi `  N )  x.  ( sum_ p  e.  ( ( 1 ... ( |_
`  x ) )  i^i  T ) ( (Λ `  p )  /  p )  -  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p )  /  p
) ) ) )
9525, 42, 28nnncan2d 10427 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( ( phi `  N )  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i 
T ) ( (Λ `  p )  /  p
) )  -  ( log `  x ) )  -  ( ( ( phi `  N )  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p )  /  p ) )  -  ( log `  x
) ) )  =  ( ( ( phi `  N )  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i 
T ) ( (Λ `  p )  /  p
) )  -  (
( phi `  N
)  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p
)  /  p ) ) ) )
9644, 94, 953eqtr4d 2666 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( phi `  N )  x. 
sum_ p  e.  (
( 1 ... ( |_ `  x ) )  i^i  T ) ( ( (Λ `  p
)  -  if ( p  e.  Prime ,  ( log `  p ) ,  0 ) )  /  p ) )  =  ( ( ( ( phi `  N
)  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( (Λ `  p
)  /  p ) )  -  ( log `  x ) )  -  ( ( ( phi `  N )  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p )  /  p
) )  -  ( log `  x ) ) ) )
9796mpteq2dva 4744 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( phi `  N )  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i 
T ) ( ( (Λ `  p )  -  if ( p  e. 
Prime ,  ( log `  p ) ,  0 ) )  /  p
) ) )  =  ( x  e.  RR+  |->  ( ( ( ( phi `  N )  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  T ) ( (Λ `  p )  /  p ) )  -  ( log `  x ) )  -  ( ( ( phi `  N
)  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p
)  /  p ) )  -  ( log `  x ) ) ) ) )
9819, 48resubcld 10458 . . . . . . . . 9  |-  ( p  e.  NN  ->  (
(Λ `  p )  -  if ( p  e.  Prime ,  ( log `  p
) ,  0 ) )  e.  RR )
9998, 36rerpdivcld 11903 . . . . . . . 8  |-  ( p  e.  NN  ->  (
( (Λ `  p )  -  if ( p  e. 
Prime ,  ( log `  p ) ,  0 ) )  /  p
)  e.  RR )
10018, 99syl 17 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) )  ->  (
( (Λ `  p )  -  if ( p  e. 
Prime ,  ( log `  p ) ,  0 ) )  /  p
)  e.  RR )
10114, 100fsumrecl 14465 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( ( (Λ `  p )  -  if ( p  e.  Prime ,  ( log `  p
) ,  0 ) )  /  p )  e.  RR )
102101recnd 10068 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( ( (Λ `  p )  -  if ( p  e.  Prime ,  ( log `  p
) ,  0 ) )  /  p )  e.  CC )
103 rpssre 11843 . . . . . 6  |-  RR+  C_  RR
1048nncnd 11036 . . . . . 6  |-  ( ph  ->  ( phi `  N
)  e.  CC )
105 o1const 14350 . . . . . 6  |-  ( (
RR+  C_  RR  /\  ( phi `  N )  e.  CC )  ->  (
x  e.  RR+  |->  ( phi `  N ) )  e.  O(1) )
106103, 104, 105sylancr 695 . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  ( phi `  N ) )  e.  O(1) )
107103a1i 11 . . . . . 6  |-  ( ph  -> 
RR+  C_  RR )
108 1red 10055 . . . . . 6  |-  ( ph  ->  1  e.  RR )
109 2re 11090 . . . . . . 7  |-  2  e.  RR
110109a1i 11 . . . . . 6  |-  ( ph  ->  2  e.  RR )
111 breq1 4656 . . . . . . . . . . . . . 14  |-  ( ( log `  p )  =  if ( p  e.  Prime ,  ( log `  p ) ,  0 )  ->  ( ( log `  p )  <_ 
(Λ `  p )  <->  if (
p  e.  Prime ,  ( log `  p ) ,  0 )  <_ 
(Λ `  p ) ) )
112 breq1 4656 . . . . . . . . . . . . . 14  |-  ( 0  =  if ( p  e.  Prime ,  ( log `  p ) ,  0 )  ->  ( 0  <_  (Λ `  p )  <->  if ( p  e.  Prime ,  ( log `  p
) ,  0 )  <_  (Λ `  p )
) )
11337adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  NN  /\  p  e.  Prime )  -> 
( log `  p
)  e.  RR )
114 vmaprm 24843 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  Prime  ->  (Λ `  p
)  =  ( log `  p ) )
115114adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  NN  /\  p  e.  Prime )  -> 
(Λ `  p )  =  ( log `  p
) )
116115eqcomd 2628 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  NN  /\  p  e.  Prime )  -> 
( log `  p
)  =  (Λ `  p
) )
117 eqle 10139 . . . . . . . . . . . . . . 15  |-  ( ( ( log `  p
)  e.  RR  /\  ( log `  p )  =  (Λ `  p
) )  ->  ( log `  p )  <_ 
(Λ `  p ) )
118113, 116, 117syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( p  e.  NN  /\  p  e.  Prime )  -> 
( log `  p
)  <_  (Λ `  p
) )
119 vmage0 24847 . . . . . . . . . . . . . . 15  |-  ( p  e.  NN  ->  0  <_  (Λ `  p )
)
120119adantr 481 . . . . . . . . . . . . . 14  |-  ( ( p  e.  NN  /\  -.  p  e.  Prime )  ->  0  <_  (Λ `  p ) )
121111, 112, 118, 120ifbothda 4123 . . . . . . . . . . . . 13  |-  ( p  e.  NN  ->  if ( p  e.  Prime ,  ( log `  p
) ,  0 )  <_  (Λ `  p )
)
12219, 48subge0d 10617 . . . . . . . . . . . . 13  |-  ( p  e.  NN  ->  (
0  <_  ( (Λ `  p )  -  if ( p  e.  Prime ,  ( log `  p
) ,  0 ) )  <->  if ( p  e. 
Prime ,  ( log `  p ) ,  0 )  <_  (Λ `  p
) ) )
123121, 122mpbird 247 . . . . . . . . . . . 12  |-  ( p  e.  NN  ->  0  <_  ( (Λ `  p
)  -  if ( p  e.  Prime ,  ( log `  p ) ,  0 ) ) )
12498, 36, 123divge0d 11912 . . . . . . . . . . 11  |-  ( p  e.  NN  ->  0  <_  ( ( (Λ `  p
)  -  if ( p  e.  Prime ,  ( log `  p ) ,  0 ) )  /  p ) )
12518, 124syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) )  ->  0  <_  ( ( (Λ `  p
)  -  if ( p  e.  Prime ,  ( log `  p ) ,  0 ) )  /  p ) )
12614, 100, 125fsumge0 14527 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  0  <_  sum_
p  e.  ( ( 1 ... ( |_
`  x ) )  i^i  T ) ( ( (Λ `  p
)  -  if ( p  e.  Prime ,  ( log `  p ) ,  0 ) )  /  p ) )
127101, 126absidd 14161 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ p  e.  (
( 1 ... ( |_ `  x ) )  i^i  T ) ( ( (Λ `  p
)  -  if ( p  e.  Prime ,  ( log `  p ) ,  0 ) )  /  p ) )  =  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  T ) ( ( (Λ `  p
)  -  if ( p  e.  Prime ,  ( log `  p ) ,  0 ) )  /  p ) )
12817adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( 1 ... ( |_ `  x ) ) )  ->  p  e.  NN )
129128, 99syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  p )  -  if ( p  e.  Prime ,  ( log `  p
) ,  0 ) )  /  p )  e.  RR )
13011, 129fsumrecl 14465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ p  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  p
)  -  if ( p  e.  Prime ,  ( log `  p ) ,  0 ) )  /  p )  e.  RR )
131109a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  2  e.  RR )
132128, 124syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( ( (Λ `  p
)  -  if ( p  e.  Prime ,  ( log `  p ) ,  0 ) )  /  p ) )
13312a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
1 ... ( |_ `  x ) )  i^i 
T )  C_  (
1 ... ( |_ `  x ) ) )
13411, 129, 132, 133fsumless 14528 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( ( (Λ `  p )  -  if ( p  e.  Prime ,  ( log `  p
) ,  0 ) )  /  p )  <_  sum_ p  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  p
)  -  if ( p  e.  Prime ,  ( log `  p ) ,  0 ) )  /  p ) )
135107sselda 3603 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
136135flcld 12599 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  e.  ZZ )
137 rplogsumlem2 25174 . . . . . . . . . 10  |-  ( ( |_ `  x )  e.  ZZ  ->  sum_ p  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  p
)  -  if ( p  e.  Prime ,  ( log `  p ) ,  0 ) )  /  p )  <_ 
2 )
138136, 137syl 17 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ p  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  p
)  -  if ( p  e.  Prime ,  ( log `  p ) ,  0 ) )  /  p )  <_ 
2 )
139101, 130, 131, 134, 138letrd 10194 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( ( (Λ `  p )  -  if ( p  e.  Prime ,  ( log `  p
) ,  0 ) )  /  p )  <_  2 )
140127, 139eqbrtrd 4675 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ p  e.  (
( 1 ... ( |_ `  x ) )  i^i  T ) ( ( (Λ `  p
)  -  if ( p  e.  Prime ,  ( log `  p ) ,  0 ) )  /  p ) )  <_  2 )
141140adantrr 753 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i 
T ) ( ( (Λ `  p )  -  if ( p  e. 
Prime ,  ( log `  p ) ,  0 ) )  /  p
) )  <_  2
)
142107, 102, 108, 110, 141elo1d 14267 . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
p  e.  ( ( 1 ... ( |_
`  x ) )  i^i  T ) ( ( (Λ `  p
)  -  if ( p  e.  Prime ,  ( log `  p ) ,  0 ) )  /  p ) )  e.  O(1) )
14310, 102, 106, 142o1mul2 14355 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( phi `  N )  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i 
T ) ( ( (Λ `  p )  -  if ( p  e. 
Prime ,  ( log `  p ) ,  0 ) )  /  p
) ) )  e.  O(1) )
14497, 143eqeltrrd 2702 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( ( ( phi `  N )  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  T ) ( (Λ `  p )  /  p ) )  -  ( log `  x ) )  -  ( ( ( phi `  N
)  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p
)  /  p ) )  -  ( log `  x ) ) ) )  e.  O(1) )
14529, 43, 144o1dif 14360 . 2  |-  ( ph  ->  ( ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  T ) ( (Λ `  p )  /  p ) )  -  ( log `  x ) ) )  e.  O(1)  <->  (
x  e.  RR+  |->  ( ( ( phi `  N
)  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p
)  /  p ) )  -  ( log `  x ) ) )  e.  O(1) ) )
1467, 145mpbid 222 1  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ p  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p )  /  p
) )  -  ( log `  x ) ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571    i^i cin 3573    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   "cima 5117   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377   RR+crp 11832   ...cfz 12326   |_cfl 12591   abscabs 13974   O(1)co1 14217   sum_csu 14416   Primecprime 15385   phicphi 15469  Unitcui 18639   ZRHomczrh 19848  ℤ/nczn 19851   logclog 24301  Λcvma 24818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-rpss 6937  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-o1 14221  df-lo1 14222  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-numer 15443  df-denom 15444  df-phi 15471  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-qus 16169  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-gim 17701  df-ga 17723  df-cntz 17750  df-oppg 17776  df-od 17948  df-gex 17949  df-pgp 17950  df-lsm 18051  df-pj1 18052  df-cmn 18195  df-abl 18196  df-cyg 18280  df-dprd 18394  df-dpj 18395  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-0p 23437  df-limc 23630  df-dv 23631  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947  df-quot 24046  df-log 24303  df-cxp 24304  df-em 24719  df-cht 24823  df-vma 24824  df-chp 24825  df-ppi 24826  df-mu 24827  df-dchr 24958
This theorem is referenced by:  dirith2  25217
  Copyright terms: Public domain W3C validator