Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfiooicclem1 Structured version   Visualization version   Unicode version

Theorem cncfiooicclem1 40106
Description: A continuous function  F on an open interval  ( A (,) B ) can be extended to a continuous function  G on the corresponding closed interval, if it has a finite right limit  R in  A and a finite left limit  L in  B.  F can be complex valued. This lemma assumes  A  <  B, the invoking theorem drops this assumption. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfiooicclem1.x  |-  F/ x ph
cncfiooicclem1.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) ) )
cncfiooicclem1.a  |-  ( ph  ->  A  e.  RR )
cncfiooicclem1.b  |-  ( ph  ->  B  e.  RR )
cncfiooicclem1.altb  |-  ( ph  ->  A  <  B )
cncfiooicclem1.f  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
cncfiooicclem1.l  |-  ( ph  ->  L  e.  ( F lim
CC  B ) )
cncfiooicclem1.r  |-  ( ph  ->  R  e.  ( F lim
CC  A ) )
Assertion
Ref Expression
cncfiooicclem1  |-  ( ph  ->  G  e.  ( ( A [,] B )
-cn-> CC ) )
Distinct variable groups:    x, A    x, B    x, F    x, L    x, R
Allowed substitution hints:    ph( x)    G( x)

Proof of Theorem cncfiooicclem1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cncfiooicclem1.x . . . 4  |-  F/ x ph
2 limccl 23639 . . . . . . 7  |-  ( F lim
CC  A )  C_  CC
3 cncfiooicclem1.r . . . . . . 7  |-  ( ph  ->  R  e.  ( F lim
CC  A ) )
42, 3sseldi 3601 . . . . . 6  |-  ( ph  ->  R  e.  CC )
54ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  x  =  A )  ->  R  e.  CC )
6 limccl 23639 . . . . . . . 8  |-  ( F lim
CC  B )  C_  CC
7 cncfiooicclem1.l . . . . . . . 8  |-  ( ph  ->  L  e.  ( F lim
CC  B ) )
86, 7sseldi 3601 . . . . . . 7  |-  ( ph  ->  L  e.  CC )
98ad3antrrr 766 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  x  =  B )  ->  L  e.  CC )
10 simplll 798 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  ph )
11 orel1 397 . . . . . . . . . . 11  |-  ( -.  x  =  A  -> 
( ( x  =  A  \/  x  =  B )  ->  x  =  B ) )
1211con3dimp 457 . . . . . . . . . 10  |-  ( ( -.  x  =  A  /\  -.  x  =  B )  ->  -.  ( x  =  A  \/  x  =  B
) )
13 vex 3203 . . . . . . . . . . 11  |-  x  e. 
_V
1413elpr 4198 . . . . . . . . . 10  |-  ( x  e.  { A ,  B }  <->  ( x  =  A  \/  x  =  B ) )
1512, 14sylnibr 319 . . . . . . . . 9  |-  ( ( -.  x  =  A  /\  -.  x  =  B )  ->  -.  x  e.  { A ,  B } )
1615adantll 750 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  -.  x  e.  { A ,  B } )
17 simpllr 799 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  x  e.  ( A [,] B
) )
18 cncfiooicclem1.a . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  RR )
1918rexrd 10089 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR* )
2010, 19syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  A  e.  RR* )
21 cncfiooicclem1.b . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  RR )
2221rexrd 10089 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR* )
2310, 22syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  B  e.  RR* )
24 cncfiooicclem1.altb . . . . . . . . . . . . 13  |-  ( ph  ->  A  <  B )
2518, 21, 24ltled 10185 . . . . . . . . . . . 12  |-  ( ph  ->  A  <_  B )
2610, 25syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  A  <_  B )
27 prunioo 12301 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( A [,] B
) )
2820, 23, 26, 27syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( A [,] B
) )
2917, 28eleqtrrd 2704 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  x  e.  ( ( A (,) B )  u.  { A ,  B }
) )
30 elun 3753 . . . . . . . . 9  |-  ( x  e.  ( ( A (,) B )  u. 
{ A ,  B } )  <->  ( x  e.  ( A (,) B
)  \/  x  e. 
{ A ,  B } ) )
3129, 30sylib 208 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  (
x  e.  ( A (,) B )  \/  x  e.  { A ,  B } ) )
32 orel2 398 . . . . . . . 8  |-  ( -.  x  e.  { A ,  B }  ->  (
( x  e.  ( A (,) B )  \/  x  e.  { A ,  B }
)  ->  x  e.  ( A (,) B ) ) )
3316, 31, 32sylc 65 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  x  e.  ( A (,) B
) )
34 cncfiooicclem1.f . . . . . . . . 9  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
35 cncff 22696 . . . . . . . . 9  |-  ( F  e.  ( ( A (,) B ) -cn-> CC )  ->  F :
( A (,) B
) --> CC )
3634, 35syl 17 . . . . . . . 8  |-  ( ph  ->  F : ( A (,) B ) --> CC )
3736ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( F `  x )  e.  CC )
3810, 33, 37syl2anc 693 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  ( F `  x )  e.  CC )
399, 38ifclda 4120 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  if ( x  =  B ,  L , 
( F `  x
) )  e.  CC )
405, 39ifclda 4120 . . . 4  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  e.  CC )
41 cncfiooicclem1.g . . . 4  |-  G  =  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) ) )
421, 40, 41fmptdf 6387 . . 3  |-  ( ph  ->  G : ( A [,] B ) --> CC )
43 elun 3753 . . . . . . 7  |-  ( y  e.  ( ( A (,) B )  u. 
{ A ,  B } )  <->  ( y  e.  ( A (,) B
)  \/  y  e. 
{ A ,  B } ) )
4419, 22, 25, 27syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( ( A (,) B )  u.  { A ,  B }
)  =  ( A [,] B ) )
4544eleq2d 2687 . . . . . . 7  |-  ( ph  ->  ( y  e.  ( ( A (,) B
)  u.  { A ,  B } )  <->  y  e.  ( A [,] B ) ) )
4643, 45syl5bbr 274 . . . . . 6  |-  ( ph  ->  ( ( y  e.  ( A (,) B
)  \/  y  e. 
{ A ,  B } )  <->  y  e.  ( A [,] B ) ) )
4746biimpar 502 . . . . 5  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( y  e.  ( A (,) B
)  \/  y  e. 
{ A ,  B } ) )
48 ioossicc 12259 . . . . . . . . . . . . 13  |-  ( A (,) B )  C_  ( A [,] B )
49 fssres 6070 . . . . . . . . . . . . 13  |-  ( ( G : ( A [,] B ) --> CC 
/\  ( A (,) B )  C_  ( A [,] B ) )  ->  ( G  |`  ( A (,) B ) ) : ( A (,) B ) --> CC )
5042, 48, 49sylancl 694 . . . . . . . . . . . 12  |-  ( ph  ->  ( G  |`  ( A (,) B ) ) : ( A (,) B ) --> CC )
5150feqmptd 6249 . . . . . . . . . . 11  |-  ( ph  ->  ( G  |`  ( A (,) B ) )  =  ( y  e.  ( A (,) B
)  |->  ( ( G  |`  ( A (,) B
) ) `  y
) ) )
52 nfmpt1 4747 . . . . . . . . . . . . . . . 16  |-  F/_ x
( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) ) )
5341, 52nfcxfr 2762 . . . . . . . . . . . . . . 15  |-  F/_ x G
54 nfcv 2764 . . . . . . . . . . . . . . 15  |-  F/_ x
( A (,) B
)
5553, 54nfres 5398 . . . . . . . . . . . . . 14  |-  F/_ x
( G  |`  ( A (,) B ) )
56 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ x
y
5755, 56nffv 6198 . . . . . . . . . . . . 13  |-  F/_ x
( ( G  |`  ( A (,) B ) ) `  y )
58 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ y
( G  |`  ( A (,) B ) )
59 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ y
x
6058, 59nffv 6198 . . . . . . . . . . . . 13  |-  F/_ y
( ( G  |`  ( A (,) B ) ) `  x )
61 fveq2 6191 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  (
( G  |`  ( A (,) B ) ) `
 y )  =  ( ( G  |`  ( A (,) B ) ) `  x ) )
6257, 60, 61cbvmpt 4749 . . . . . . . . . . . 12  |-  ( y  e.  ( A (,) B )  |->  ( ( G  |`  ( A (,) B ) ) `  y ) )  =  ( x  e.  ( A (,) B ) 
|->  ( ( G  |`  ( A (,) B ) ) `  x ) )
6362a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( y  e.  ( A (,) B ) 
|->  ( ( G  |`  ( A (,) B ) ) `  y ) )  =  ( x  e.  ( A (,) B )  |->  ( ( G  |`  ( A (,) B ) ) `  x ) ) )
64 fvres 6207 . . . . . . . . . . . . . 14  |-  ( x  e.  ( A (,) B )  ->  (
( G  |`  ( A (,) B ) ) `
 x )  =  ( G `  x
) )
6564adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( G  |`  ( A (,) B ) ) `  x )  =  ( G `  x ) )
66 simpr 477 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  e.  ( A (,) B ) )
6748, 66sseldi 3601 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  e.  ( A [,] B ) )
684adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  R  e.  CC )
698ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( A (,) B
) )  /\  x  =  B )  ->  L  e.  CC )
7037adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( A (,) B
) )  /\  -.  x  =  B )  ->  ( F `  x
)  e.  CC )
7169, 70ifclda 4120 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  if (
x  =  B ,  L ,  ( F `  x ) )  e.  CC )
7268, 71ifcld 4131 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  e.  CC )
7341fvmpt2 6291 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( A [,] B )  /\  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) )  e.  CC )  ->  ( G `  x )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) ) )
7467, 72, 73syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( G `  x )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) ) )
75 elioo4g 12234 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( A (,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e.  RR )  /\  ( A  <  x  /\  x  <  B ) ) )
7675biimpi 206 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( A (,) B )  ->  (
( A  e.  RR*  /\  B  e.  RR*  /\  x  e.  RR )  /\  ( A  <  x  /\  x  <  B ) ) )
7776simpld 475 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( A (,) B )  ->  ( A  e.  RR*  /\  B  e.  RR*  /\  x  e.  RR ) )
7877simp1d 1073 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( A (,) B )  ->  A  e.  RR* )
79 elioore 12205 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( A (,) B )  ->  x  e.  RR )
8079rexrd 10089 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( A (,) B )  ->  x  e.  RR* )
81 eliooord 12233 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( A (,) B )  ->  ( A  <  x  /\  x  <  B ) )
8281simpld 475 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( A (,) B )  ->  A  <  x )
83 xrltne 11994 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  RR*  /\  x  e.  RR*  /\  A  < 
x )  ->  x  =/=  A )
8478, 80, 82, 83syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( A (,) B )  ->  x  =/=  A )
8584adantl 482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  =/=  A )
8685neneqd 2799 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  -.  x  =  A )
8786iffalsed 4097 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  =  if ( x  =  B ,  L ,  ( F `  x ) ) )
8881simprd 479 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( A (,) B )  ->  x  <  B )
8979, 88ltned 10173 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( A (,) B )  ->  x  =/=  B )
9089neneqd 2799 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( A (,) B )  ->  -.  x  =  B )
9190iffalsed 4097 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( A (,) B )  ->  if ( x  =  B ,  L ,  ( F `
 x ) )  =  ( F `  x ) )
9291adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  if (
x  =  B ,  L ,  ( F `  x ) )  =  ( F `  x
) )
9387, 92eqtrd 2656 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  =  ( F `  x ) )
9465, 74, 933eqtrd 2660 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( G  |`  ( A (,) B ) ) `  x )  =  ( F `  x ) )
951, 94mpteq2da 4743 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  ( ( G  |`  ( A (,) B ) ) `  x ) )  =  ( x  e.  ( A (,) B )  |->  ( F `
 x ) ) )
9651, 63, 953eqtrd 2660 . . . . . . . . . 10  |-  ( ph  ->  ( G  |`  ( A (,) B ) )  =  ( x  e.  ( A (,) B
)  |->  ( F `  x ) ) )
9736feqmptd 6249 . . . . . . . . . . 11  |-  ( ph  ->  F  =  ( x  e.  ( A (,) B )  |->  ( F `
 x ) ) )
98 ioosscn 39716 . . . . . . . . . . . . 13  |-  ( A (,) B )  C_  CC
9998a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( A (,) B
)  C_  CC )
100 ssid 3624 . . . . . . . . . . . 12  |-  CC  C_  CC
101 eqid 2622 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
102 eqid 2622 . . . . . . . . . . . . 13  |-  ( (
TopOpen ` fld )t  ( A (,) B
) )  =  ( ( TopOpen ` fld )t  ( A (,) B ) )
103101cnfldtop 22587 . . . . . . . . . . . . . . 15  |-  ( TopOpen ` fld )  e.  Top
104 unicntop 22589 . . . . . . . . . . . . . . . 16  |-  CC  =  U. ( TopOpen ` fld )
105104restid 16094 . . . . . . . . . . . . . . 15  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
106103, 105ax-mp 5 . . . . . . . . . . . . . 14  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
107106eqcomi 2631 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
108101, 102, 107cncfcn 22712 . . . . . . . . . . . 12  |-  ( ( ( A (,) B
)  C_  CC  /\  CC  C_  CC )  ->  (
( A (,) B
) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) ) )
10999, 100, 108sylancl 694 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A (,) B ) -cn-> CC )  =  ( ( (
TopOpen ` fld )t  ( A (,) B
) )  Cn  ( TopOpen
` fld
) ) )
11034, 97, 1093eltr3d 2715 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  ( F `  x
) )  e.  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) ) )
11196, 110eqeltrd 2701 . . . . . . . . 9  |-  ( ph  ->  ( G  |`  ( A (,) B ) )  e.  ( ( (
TopOpen ` fld )t  ( A (,) B
) )  Cn  ( TopOpen
` fld
) ) )
112104restuni 20966 . . . . . . . . . . 11  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( A (,) B
)  C_  CC )  ->  ( A (,) B
)  =  U. (
( TopOpen ` fld )t  ( A (,) B ) ) )
113103, 98, 112mp2an 708 . . . . . . . . . 10  |-  ( A (,) B )  = 
U. ( ( TopOpen ` fld )t  ( A (,) B ) )
114113cncnpi 21082 . . . . . . . . 9  |-  ( ( ( G  |`  ( A (,) B ) )  e.  ( ( (
TopOpen ` fld )t  ( A (,) B
) )  Cn  ( TopOpen
` fld
) )  /\  y  e.  ( A (,) B
) )  ->  ( G  |`  ( A (,) B ) )  e.  ( ( ( (
TopOpen ` fld )t  ( A (,) B
) )  CnP  ( TopOpen
` fld
) ) `  y
) )
115111, 114sylan 488 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( G  |`  ( A (,) B
) )  e.  ( ( ( ( TopOpen ` fld )t  ( A (,) B ) )  CnP  ( TopOpen ` fld ) ) `  y
) )
116103a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( TopOpen ` fld )  e.  Top )
11748a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( A (,) B )  C_  ( A [,] B ) )
118 ovex 6678 . . . . . . . . . . . . 13  |-  ( A [,] B )  e. 
_V
119118a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( A [,] B )  e.  _V )
120 restabs 20969 . . . . . . . . . . . 12  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( A (,) B
)  C_  ( A [,] B )  /\  ( A [,] B )  e. 
_V )  ->  (
( ( TopOpen ` fld )t  ( A [,] B ) )t  ( A (,) B ) )  =  ( ( TopOpen ` fld )t  ( A (,) B ) ) )
121116, 117, 119, 120syl3anc 1326 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( (
( TopOpen ` fld )t  ( A [,] B ) )t  ( A (,) B ) )  =  ( ( TopOpen ` fld )t  ( A (,) B ) ) )
122121eqcomd 2628 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( ( TopOpen
` fld
)t  ( A (,) B
) )  =  ( ( ( TopOpen ` fld )t  ( A [,] B ) )t  ( A (,) B ) ) )
123122oveq1d 6665 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( (
( TopOpen ` fld )t  ( A (,) B ) )  CnP  ( TopOpen ` fld ) )  =  ( ( ( ( TopOpen ` fld )t  ( A [,] B ) )t  ( A (,) B ) )  CnP  ( TopOpen ` fld )
) )
124123fveq1d 6193 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( (
( ( TopOpen ` fld )t  ( A (,) B ) )  CnP  ( TopOpen ` fld ) ) `  y
)  =  ( ( ( ( ( TopOpen ` fld )t  ( A [,] B ) )t  ( A (,) B ) )  CnP  ( TopOpen ` fld )
) `  y )
)
125115, 124eleqtrd 2703 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( G  |`  ( A (,) B
) )  e.  ( ( ( ( (
TopOpen ` fld )t  ( A [,] B
) )t  ( A (,) B ) )  CnP  ( TopOpen ` fld ) ) `  y
) )
126 resttop 20964 . . . . . . . . . 10  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( A [,] B
)  e.  _V )  ->  ( ( TopOpen ` fld )t  ( A [,] B ) )  e. 
Top )
127103, 118, 126mp2an 708 . . . . . . . . 9  |-  ( (
TopOpen ` fld )t  ( A [,] B
) )  e.  Top
128127a1i 11 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( ( TopOpen
` fld
)t  ( A [,] B
) )  e.  Top )
12948a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( A (,) B
)  C_  ( A [,] B ) )
13018, 21iccssred 39727 . . . . . . . . . . . 12  |-  ( ph  ->  ( A [,] B
)  C_  RR )
131 ax-resscn 9993 . . . . . . . . . . . 12  |-  RR  C_  CC
132130, 131syl6ss 3615 . . . . . . . . . . 11  |-  ( ph  ->  ( A [,] B
)  C_  CC )
133104restuni 20966 . . . . . . . . . . 11  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( A [,] B
)  C_  CC )  ->  ( A [,] B
)  =  U. (
( TopOpen ` fld )t  ( A [,] B ) ) )
134103, 132, 133sylancr 695 . . . . . . . . . 10  |-  ( ph  ->  ( A [,] B
)  =  U. (
( TopOpen ` fld )t  ( A [,] B ) ) )
135129, 134sseqtrd 3641 . . . . . . . . 9  |-  ( ph  ->  ( A (,) B
)  C_  U. (
( TopOpen ` fld )t  ( A [,] B ) ) )
136135adantr 481 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( A (,) B )  C_  U. (
( TopOpen ` fld )t  ( A [,] B ) ) )
137 retop 22565 . . . . . . . . . . . . . 14  |-  ( topGen ` 
ran  (,) )  e.  Top
138137a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( topGen ` 
ran  (,) )  e.  Top )
139 ioossre 12235 . . . . . . . . . . . . . . 15  |-  ( A (,) B )  C_  RR
140 difss 3737 . . . . . . . . . . . . . . 15  |-  ( RR 
\  ( A [,] B ) )  C_  RR
141139, 140unssi 3788 . . . . . . . . . . . . . 14  |-  ( ( A (,) B )  u.  ( RR  \ 
( A [,] B
) ) )  C_  RR
142141a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( ( A (,) B )  u.  ( RR  \  ( A [,] B ) ) )  C_  RR )
143 ssun1 3776 . . . . . . . . . . . . . 14  |-  ( A (,) B )  C_  ( ( A (,) B )  u.  ( RR  \  ( A [,] B ) ) )
144143a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( A (,) B )  C_  (
( A (,) B
)  u.  ( RR 
\  ( A [,] B ) ) ) )
145 uniretop 22566 . . . . . . . . . . . . . 14  |-  RR  =  U. ( topGen `  ran  (,) )
146145ntrss 20859 . . . . . . . . . . . . 13  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( ( A (,) B )  u.  ( RR  \ 
( A [,] B
) ) )  C_  RR  /\  ( A (,) B )  C_  (
( A (,) B
)  u.  ( RR 
\  ( A [,] B ) ) ) )  ->  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A (,) B ) ) 
C_  ( ( int `  ( topGen `  ran  (,) )
) `  ( ( A (,) B )  u.  ( RR  \  ( A [,] B ) ) ) ) )
147138, 142, 144, 146syl3anc 1326 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A (,) B ) ) 
C_  ( ( int `  ( topGen `  ran  (,) )
) `  ( ( A (,) B )  u.  ( RR  \  ( A [,] B ) ) ) ) )
148 simpr 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  y  e.  ( A (,) B ) )
149 ioontr 39736 . . . . . . . . . . . . 13  |-  ( ( int `  ( topGen ` 
ran  (,) ) ) `  ( A (,) B ) )  =  ( A (,) B )
150148, 149syl6eleqr 2712 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  y  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A (,) B ) ) )
151147, 150sseldd 3604 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  y  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( ( A (,) B )  u.  ( RR  \  ( A [,] B ) ) ) ) )
15248, 148sseldi 3601 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  y  e.  ( A [,] B ) )
153151, 152elind 3798 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  y  e.  ( ( ( int `  ( topGen `  ran  (,) )
) `  ( ( A (,) B )  u.  ( RR  \  ( A [,] B ) ) ) )  i^i  ( A [,] B ) ) )
154130adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( A [,] B )  C_  RR )
155 eqid 2622 . . . . . . . . . . . 12  |-  ( (
topGen `  ran  (,) )t  ( A [,] B ) )  =  ( ( topGen ` 
ran  (,) )t  ( A [,] B ) )
156145, 155restntr 20986 . . . . . . . . . . 11  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( A [,] B )  C_  RR  /\  ( A (,) B )  C_  ( A [,] B ) )  ->  ( ( int `  ( ( topGen `  ran  (,) )t  ( A [,] B
) ) ) `  ( A (,) B ) )  =  ( ( ( int `  ( topGen `
 ran  (,) )
) `  ( ( A (,) B )  u.  ( RR  \  ( A [,] B ) ) ) )  i^i  ( A [,] B ) ) )
157138, 154, 117, 156syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( ( int `  ( ( topGen ` 
ran  (,) )t  ( A [,] B ) ) ) `
 ( A (,) B ) )  =  ( ( ( int `  ( topGen `  ran  (,) )
) `  ( ( A (,) B )  u.  ( RR  \  ( A [,] B ) ) ) )  i^i  ( A [,] B ) ) )
158153, 157eleqtrrd 2704 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  y  e.  ( ( int `  (
( topGen `  ran  (,) )t  ( A [,] B ) ) ) `  ( A (,) B ) ) )
159101tgioo2 22606 . . . . . . . . . . . . . . 15  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
160159a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( topGen `  ran  (,) )  =  ( ( TopOpen ` fld )t  RR ) )
161160oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( A [,] B
) )  =  ( ( ( TopOpen ` fld )t  RR )t  ( A [,] B ) ) )
162103a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( TopOpen ` fld )  e.  Top )
163 reex 10027 . . . . . . . . . . . . . . 15  |-  RR  e.  _V
164163a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  RR  e.  _V )
165 restabs 20969 . . . . . . . . . . . . . 14  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( A [,] B
)  C_  RR  /\  RR  e.  _V )  ->  (
( ( TopOpen ` fld )t  RR )t  ( A [,] B ) )  =  ( ( TopOpen ` fld )t  ( A [,] B ) ) )
166162, 130, 164, 165syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( TopOpen ` fld )t  RR )t  ( A [,] B ) )  =  ( (
TopOpen ` fld )t  ( A [,] B
) ) )
167161, 166eqtrd 2656 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( A [,] B
) )  =  ( ( TopOpen ` fld )t  ( A [,] B ) ) )
168167fveq2d 6195 . . . . . . . . . . 11  |-  ( ph  ->  ( int `  (
( topGen `  ran  (,) )t  ( A [,] B ) ) )  =  ( int `  ( ( TopOpen ` fld )t  ( A [,] B ) ) ) )
169168fveq1d 6193 . . . . . . . . . 10  |-  ( ph  ->  ( ( int `  (
( topGen `  ran  (,) )t  ( A [,] B ) ) ) `  ( A (,) B ) )  =  ( ( int `  ( ( TopOpen ` fld )t  ( A [,] B ) ) ) `
 ( A (,) B ) ) )
170169adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( ( int `  ( ( topGen ` 
ran  (,) )t  ( A [,] B ) ) ) `
 ( A (,) B ) )  =  ( ( int `  (
( TopOpen ` fld )t  ( A [,] B ) ) ) `
 ( A (,) B ) ) )
171158, 170eleqtrd 2703 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  y  e.  ( ( int `  (
( TopOpen ` fld )t  ( A [,] B ) ) ) `
 ( A (,) B ) ) )
172134feq2d 6031 . . . . . . . . . 10  |-  ( ph  ->  ( G : ( A [,] B ) --> CC  <->  G : U. (
( TopOpen ` fld )t  ( A [,] B ) ) --> CC ) )
17342, 172mpbid 222 . . . . . . . . 9  |-  ( ph  ->  G : U. (
( TopOpen ` fld )t  ( A [,] B ) ) --> CC )
174173adantr 481 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  G : U. ( ( TopOpen ` fld )t  ( A [,] B ) ) --> CC )
175 eqid 2622 . . . . . . . . 9  |-  U. (
( TopOpen ` fld )t  ( A [,] B ) )  = 
U. ( ( TopOpen ` fld )t  ( A [,] B ) )
176175, 104cnprest 21093 . . . . . . . 8  |-  ( ( ( ( ( TopOpen ` fld )t  ( A [,] B ) )  e.  Top  /\  ( A (,) B )  C_  U. ( ( TopOpen ` fld )t  ( A [,] B ) ) )  /\  ( y  e.  ( ( int `  (
( TopOpen ` fld )t  ( A [,] B ) ) ) `
 ( A (,) B ) )  /\  G : U. ( (
TopOpen ` fld )t  ( A [,] B
) ) --> CC ) )  ->  ( G  e.  ( ( ( (
TopOpen ` fld )t  ( A [,] B
) )  CnP  ( TopOpen
` fld
) ) `  y
)  <->  ( G  |`  ( A (,) B ) )  e.  ( ( ( ( ( TopOpen ` fld )t  ( A [,] B ) )t  ( A (,) B ) )  CnP  ( TopOpen ` fld )
) `  y )
) )
177128, 136, 171, 174, 176syl22anc 1327 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( G  e.  ( ( ( (
TopOpen ` fld )t  ( A [,] B
) )  CnP  ( TopOpen
` fld
) ) `  y
)  <->  ( G  |`  ( A (,) B ) )  e.  ( ( ( ( ( TopOpen ` fld )t  ( A [,] B ) )t  ( A (,) B ) )  CnP  ( TopOpen ` fld )
) `  y )
) )
178125, 177mpbird 247 . . . . . 6  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  G  e.  ( ( ( (
TopOpen ` fld )t  ( A [,] B
) )  CnP  ( TopOpen
` fld
) ) `  y
) )
179 elpri 4197 . . . . . . 7  |-  ( y  e.  { A ,  B }  ->  ( y  =  A  \/  y  =  B ) )
180 lbicc2 12288 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
18119, 22, 25, 180syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  ( A [,] B ) )
182 iftrue 4092 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  R )
183182, 41fvmptg 6280 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( A [,] B )  /\  R  e.  ( F lim CC  A ) )  -> 
( G `  A
)  =  R )
184181, 3, 183syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( G `  A
)  =  R )
18597eqcomd 2628 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  ( F `  x
) )  =  F )
18696, 185eqtr2d 2657 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  =  ( G  |`  ( A (,) B
) ) )
187186oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F lim CC  A
)  =  ( ( G  |`  ( A (,) B ) ) lim CC  A ) )
1883, 187eleqtrd 2703 . . . . . . . . . . . . 13  |-  ( ph  ->  R  e.  ( ( G  |`  ( A (,) B ) ) lim CC  A ) )
18918, 21, 24, 42limciccioolb 39853 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( G  |`  ( A (,) B ) ) lim CC  A )  =  ( G lim CC  A ) )
190188, 189eleqtrd 2703 . . . . . . . . . . . 12  |-  ( ph  ->  R  e.  ( G lim
CC  A ) )
191184, 190eqeltrd 2701 . . . . . . . . . . 11  |-  ( ph  ->  ( G `  A
)  e.  ( G lim
CC  A ) )
192 eqid 2622 . . . . . . . . . . . . 13  |-  ( (
TopOpen ` fld )t  ( A [,] B
) )  =  ( ( TopOpen ` fld )t  ( A [,] B ) )
193101, 192cnplimc 23651 . . . . . . . . . . . 12  |-  ( ( ( A [,] B
)  C_  CC  /\  A  e.  ( A [,] B
) )  ->  ( G  e.  ( (
( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  A
)  <->  ( G :
( A [,] B
) --> CC  /\  ( G `  A )  e.  ( G lim CC  A
) ) ) )
194132, 181, 193syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( G  e.  ( ( ( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  A
)  <->  ( G :
( A [,] B
) --> CC  /\  ( G `  A )  e.  ( G lim CC  A
) ) ) )
19542, 191, 194mpbir2and 957 . . . . . . . . . 10  |-  ( ph  ->  G  e.  ( ( ( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  A
) )
196195adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  =  A )  ->  G  e.  ( ( ( (
TopOpen ` fld )t  ( A [,] B
) )  CnP  ( TopOpen
` fld
) ) `  A
) )
197 fveq2 6191 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( ( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  y
)  =  ( ( ( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  A
) )
198197eqcomd 2628 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( ( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  A
)  =  ( ( ( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  y
) )
199198adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  y  =  A )  ->  (
( ( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  A
)  =  ( ( ( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  y
) )
200196, 199eleqtrd 2703 . . . . . . . 8  |-  ( (
ph  /\  y  =  A )  ->  G  e.  ( ( ( (
TopOpen ` fld )t  ( A [,] B
) )  CnP  ( TopOpen
` fld
) ) `  y
) )
20121leidd 10594 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  <_  B )
20218, 21, 21, 25, 201eliccd 39726 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  ( A [,] B ) )
203 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  B  =  B
204203iftruei 4093 . . . . . . . . . . . . . . . . 17  |-  if ( B  =  B ,  L ,  ( F `  B ) )  =  L
205204, 8syl5eqel 2705 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  if ( B  =  B ,  L , 
( F `  B
) )  e.  CC )
2064, 205ifcld 4131 . . . . . . . . . . . . . . 15  |-  ( ph  ->  if ( B  =  A ,  R ,  if ( B  =  B ,  L ,  ( F `  B ) ) )  e.  CC )
207202, 206jca 554 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  e.  ( A [,] B )  /\  if ( B  =  A ,  R ,  if ( B  =  B ,  L , 
( F `  B
) ) )  e.  CC ) )
208 nfv 1843 . . . . . . . . . . . . . . . 16  |-  F/ x
( B  e.  ( A [,] B )  /\  if ( B  =  A ,  R ,  if ( B  =  B ,  L , 
( F `  B
) ) )  e.  CC )
209 nfcv 2764 . . . . . . . . . . . . . . . . . 18  |-  F/_ x B
21053, 209nffv 6198 . . . . . . . . . . . . . . . . 17  |-  F/_ x
( G `  B
)
211210nfeq1 2778 . . . . . . . . . . . . . . . 16  |-  F/ x
( G `  B
)  =  if ( B  =  A ,  R ,  if ( B  =  B ,  L ,  ( F `  B ) ) )
212208, 211nfim 1825 . . . . . . . . . . . . . . 15  |-  F/ x
( ( B  e.  ( A [,] B
)  /\  if ( B  =  A ,  R ,  if ( B  =  B ,  L ,  ( F `  B ) ) )  e.  CC )  -> 
( G `  B
)  =  if ( B  =  A ,  R ,  if ( B  =  B ,  L ,  ( F `  B ) ) ) )
213 eleq1 2689 . . . . . . . . . . . . . . . . 17  |-  ( x  =  B  ->  (
x  e.  ( A [,] B )  <->  B  e.  ( A [,] B ) ) )
214182adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  =  B  /\  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  R )
215 eqtr2 2642 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  =  B  /\  x  =  A )  ->  B  =  A )
216 iftrue 4092 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  =  A  ->  if ( B  =  A ,  R ,  if ( B  =  B ,  L ,  ( F `  B ) ) )  =  R )
217216eqcomd 2628 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  =  A  ->  R  =  if ( B  =  A ,  R ,  if ( B  =  B ,  L ,  ( F `  B ) ) ) )
218215, 217syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  =  B  /\  x  =  A )  ->  R  =  if ( B  =  A ,  R ,  if ( B  =  B ,  L ,  ( F `  B ) ) ) )
219214, 218eqtrd 2656 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =  B  /\  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  if ( B  =  A ,  R ,  if ( B  =  B ,  L ,  ( F `
 B ) ) ) )
220 iffalse 4095 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  x  =  A  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) )  =  if ( x  =  B ,  L ,  ( F `  x ) ) )
221220adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  =  B  /\  -.  x  =  A
)  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  =  if ( x  =  B ,  L ,  ( F `  x ) ) )
222 iftrue 4092 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  B  ->  if ( x  =  B ,  L ,  ( F `
 x ) )  =  L )
223222adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  =  B  /\  -.  x  =  A
)  ->  if (
x  =  B ,  L ,  ( F `  x ) )  =  L )
224 df-ne 2795 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =/=  A  <->  -.  x  =  A )
225 pm13.18 2875 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  =  B  /\  x  =/=  A )  ->  B  =/=  A )
226224, 225sylan2br 493 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  =  B  /\  -.  x  =  A
)  ->  B  =/=  A )
227226neneqd 2799 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  =  B  /\  -.  x  =  A
)  ->  -.  B  =  A )
228227iffalsed 4097 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  =  B  /\  -.  x  =  A
)  ->  if ( B  =  A ,  R ,  if ( B  =  B ,  L ,  ( F `  B ) ) )  =  if ( B  =  B ,  L ,  ( F `  B ) ) )
229228, 204syl6req 2673 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  =  B  /\  -.  x  =  A
)  ->  L  =  if ( B  =  A ,  R ,  if ( B  =  B ,  L ,  ( F `
 B ) ) ) )
230221, 223, 2293eqtrd 2660 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =  B  /\  -.  x  =  A
)  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  =  if ( B  =  A ,  R ,  if ( B  =  B ,  L , 
( F `  B
) ) ) )
231219, 230pm2.61dan 832 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  B  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  if ( B  =  A ,  R ,  if ( B  =  B ,  L , 
( F `  B
) ) ) )
232231eleq1d 2686 . . . . . . . . . . . . . . . . 17  |-  ( x  =  B  ->  ( if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) )  e.  CC  <->  if ( B  =  A ,  R ,  if ( B  =  B ,  L ,  ( F `  B ) ) )  e.  CC ) )
233213, 232anbi12d 747 . . . . . . . . . . . . . . . 16  |-  ( x  =  B  ->  (
( x  e.  ( A [,] B )  /\  if ( x  =  A ,  R ,  if ( x  =  B ,  L , 
( F `  x
) ) )  e.  CC )  <->  ( B  e.  ( A [,] B
)  /\  if ( B  =  A ,  R ,  if ( B  =  B ,  L ,  ( F `  B ) ) )  e.  CC ) ) )
234 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( x  =  B  ->  ( G `  x )  =  ( G `  B ) )
235234, 231eqeq12d 2637 . . . . . . . . . . . . . . . 16  |-  ( x  =  B  ->  (
( G `  x
)  =  if ( x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  <-> 
( G `  B
)  =  if ( B  =  A ,  R ,  if ( B  =  B ,  L ,  ( F `  B ) ) ) ) )
236233, 235imbi12d 334 . . . . . . . . . . . . . . 15  |-  ( x  =  B  ->  (
( ( x  e.  ( A [,] B
)  /\  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  e.  CC )  -> 
( G `  x
)  =  if ( x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) ) )  <->  ( ( B  e.  ( A [,] B )  /\  if ( B  =  A ,  R ,  if ( B  =  B ,  L ,  ( F `  B ) ) )  e.  CC )  -> 
( G `  B
)  =  if ( B  =  A ,  R ,  if ( B  =  B ,  L ,  ( F `  B ) ) ) ) ) )
237212, 236, 73vtoclg1f 3265 . . . . . . . . . . . . . 14  |-  ( B  e.  ( A [,] B )  ->  (
( B  e.  ( A [,] B )  /\  if ( B  =  A ,  R ,  if ( B  =  B ,  L , 
( F `  B
) ) )  e.  CC )  ->  ( G `  B )  =  if ( B  =  A ,  R ,  if ( B  =  B ,  L ,  ( F `  B ) ) ) ) )
238202, 207, 237sylc 65 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G `  B
)  =  if ( B  =  A ,  R ,  if ( B  =  B ,  L ,  ( F `  B ) ) ) )
23918, 24gtned 10172 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  =/=  A )
240239neneqd 2799 . . . . . . . . . . . . . 14  |-  ( ph  ->  -.  B  =  A )
241240iffalsed 4097 . . . . . . . . . . . . 13  |-  ( ph  ->  if ( B  =  A ,  R ,  if ( B  =  B ,  L ,  ( F `  B ) ) )  =  if ( B  =  B ,  L ,  ( F `  B ) ) )
242204a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  if ( B  =  B ,  L , 
( F `  B
) )  =  L )
243238, 241, 2423eqtrd 2660 . . . . . . . . . . . 12  |-  ( ph  ->  ( G `  B
)  =  L )
244186oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F lim CC  B
)  =  ( ( G  |`  ( A (,) B ) ) lim CC  B ) )
2457, 244eleqtrd 2703 . . . . . . . . . . . . 13  |-  ( ph  ->  L  e.  ( ( G  |`  ( A (,) B ) ) lim CC  B ) )
24618, 21, 24, 42limcicciooub 39869 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( G  |`  ( A (,) B ) ) lim CC  B )  =  ( G lim CC  B ) )
247245, 246eleqtrd 2703 . . . . . . . . . . . 12  |-  ( ph  ->  L  e.  ( G lim
CC  B ) )
248243, 247eqeltrd 2701 . . . . . . . . . . 11  |-  ( ph  ->  ( G `  B
)  e.  ( G lim
CC  B ) )
249101, 192cnplimc 23651 . . . . . . . . . . . 12  |-  ( ( ( A [,] B
)  C_  CC  /\  B  e.  ( A [,] B
) )  ->  ( G  e.  ( (
( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  B
)  <->  ( G :
( A [,] B
) --> CC  /\  ( G `  B )  e.  ( G lim CC  B
) ) ) )
250132, 202, 249syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( G  e.  ( ( ( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  B
)  <->  ( G :
( A [,] B
) --> CC  /\  ( G `  B )  e.  ( G lim CC  B
) ) ) )
25142, 248, 250mpbir2and 957 . . . . . . . . . 10  |-  ( ph  ->  G  e.  ( ( ( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  B
) )
252251adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  =  B )  ->  G  e.  ( ( ( (
TopOpen ` fld )t  ( A [,] B
) )  CnP  ( TopOpen
` fld
) ) `  B
) )
253 fveq2 6191 . . . . . . . . . . 11  |-  ( y  =  B  ->  (
( ( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  y
)  =  ( ( ( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  B
) )
254253eqcomd 2628 . . . . . . . . . 10  |-  ( y  =  B  ->  (
( ( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  B
)  =  ( ( ( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  y
) )
255254adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  y  =  B )  ->  (
( ( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  B
)  =  ( ( ( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  y
) )
256252, 255eleqtrd 2703 . . . . . . . 8  |-  ( (
ph  /\  y  =  B )  ->  G  e.  ( ( ( (
TopOpen ` fld )t  ( A [,] B
) )  CnP  ( TopOpen
` fld
) ) `  y
) )
257200, 256jaodan 826 . . . . . . 7  |-  ( (
ph  /\  ( y  =  A  \/  y  =  B ) )  ->  G  e.  ( (
( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  y
) )
258179, 257sylan2 491 . . . . . 6  |-  ( (
ph  /\  y  e.  { A ,  B }
)  ->  G  e.  ( ( ( (
TopOpen ` fld )t  ( A [,] B
) )  CnP  ( TopOpen
` fld
) ) `  y
) )
259178, 258jaodan 826 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( A (,) B
)  \/  y  e. 
{ A ,  B } ) )  ->  G  e.  ( (
( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  y
) )
26047, 259syldan 487 . . . 4  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  G  e.  ( ( ( (
TopOpen ` fld )t  ( A [,] B
) )  CnP  ( TopOpen
` fld
) ) `  y
) )
261260ralrimiva 2966 . . 3  |-  ( ph  ->  A. y  e.  ( A [,] B ) G  e.  ( ( ( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  y
) )
262101cnfldtopon 22586 . . . . 5  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
263 resttopon 20965 . . . . 5  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ( A [,] B )  C_  CC )  ->  ( (
TopOpen ` fld )t  ( A [,] B
) )  e.  (TopOn `  ( A [,] B
) ) )
264262, 132, 263sylancr 695 . . . 4  |-  ( ph  ->  ( ( TopOpen ` fld )t  ( A [,] B ) )  e.  (TopOn `  ( A [,] B ) ) )
265 cncnp 21084 . . . 4  |-  ( ( ( ( TopOpen ` fld )t  ( A [,] B ) )  e.  (TopOn `  ( A [,] B ) )  /\  ( TopOpen ` fld )  e.  (TopOn `  CC ) )  -> 
( G  e.  ( ( ( TopOpen ` fld )t  ( A [,] B ) )  Cn  ( TopOpen ` fld ) )  <->  ( G : ( A [,] B ) --> CC  /\  A. y  e.  ( A [,] B ) G  e.  ( ( ( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  y
) ) ) )
266264, 262, 265sylancl 694 . . 3  |-  ( ph  ->  ( G  e.  ( ( ( TopOpen ` fld )t  ( A [,] B ) )  Cn  ( TopOpen ` fld ) )  <->  ( G : ( A [,] B ) --> CC  /\  A. y  e.  ( A [,] B ) G  e.  ( ( ( ( TopOpen ` fld )t  ( A [,] B ) )  CnP  ( TopOpen ` fld ) ) `  y
) ) ) )
26742, 261, 266mpbir2and 957 . 2  |-  ( ph  ->  G  e.  ( ( ( TopOpen ` fld )t  ( A [,] B ) )  Cn  ( TopOpen ` fld ) ) )
268101, 192, 107cncfcn 22712 . . 3  |-  ( ( ( A [,] B
)  C_  CC  /\  CC  C_  CC )  ->  (
( A [,] B
) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( A [,] B ) )  Cn  ( TopOpen ` fld ) ) )
269132, 100, 268sylancl 694 . 2  |-  ( ph  ->  ( ( A [,] B ) -cn-> CC )  =  ( ( (
TopOpen ` fld )t  ( A [,] B
) )  Cn  ( TopOpen
` fld
) ) )
270267, 269eleqtrrd 2704 1  |-  ( ph  ->  G  e.  ( ( A [,] B )
-cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   ifcif 4086   {cpr 4179   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   ran crn 5115    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   RR*cxr 10073    < clt 10074    <_ cle 10075   (,)cioo 12175   [,]cicc 12178   ↾t crest 16081   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   Topctop 20698  TopOnctopon 20715   intcnt 20821    Cn ccn 21028    CnP ccnp 21029   -cn->ccncf 22679   lim CC climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-cn 21031  df-cnp 21032  df-xms 22125  df-ms 22126  df-cncf 22681  df-limc 23630
This theorem is referenced by:  cncfiooicc  40107
  Copyright terms: Public domain W3C validator