Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.23 Structured version   Visualization version   Unicode version

Theorem jm2.23 37563
Description: Lemma for jm2.20nn 37564. Truncate binomial expansion p-adicly. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
jm2.23  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  ||  (
( A Yrm  ( N  x.  J ) )  -  ( J  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) )

Proof of Theorem jm2.23
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 12771 . . . . . 6  |-  ( 3 ... J )  e. 
Fin
2 ssrab2 3687 . . . . . 6  |-  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  C_  ( 3 ... J
)
3 ssfi 8180 . . . . . 6  |-  ( ( ( 3 ... J
)  e.  Fin  /\  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  C_  ( 3 ... J ) )  ->  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  e.  Fin )
41, 2, 3mp2an 708 . . . . 5  |-  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  e.  Fin
54a1i 11 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  e.  Fin )
6 nnnn0 11299 . . . . . . . 8  |-  ( J  e.  NN  ->  J  e.  NN0 )
763ad2ant3 1084 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  J  e.  NN0 )
82sseli 3599 . . . . . . . 8  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  a  e.  ( 3 ... J
) )
9 elfzelz 12342 . . . . . . . 8  |-  ( a  e.  ( 3 ... J )  ->  a  e.  ZZ )
108, 9syl 17 . . . . . . 7  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  a  e.  ZZ )
11 bccl 13109 . . . . . . 7  |-  ( ( J  e.  NN0  /\  a  e.  ZZ )  ->  ( J  _C  a
)  e.  NN0 )
127, 10, 11syl2an 494 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( J  _C  a )  e. 
NN0 )
1312nn0zd 11480 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( J  _C  a )  e.  ZZ )
14 simpl1 1064 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  A  e.  ( ZZ>= `  2 )
)
15 simpl2 1065 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  N  e.  ZZ )
16 frmx 37478 . . . . . . . . . 10  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
1716fovcl 6765 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  NN0 )
1814, 15, 17syl2anc 693 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( A Xrm 
N )  e.  NN0 )
1918nn0zd 11480 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( A Xrm 
N )  e.  ZZ )
208adantl 482 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  a  e.  ( 3 ... J
) )
21 fznn0sub 12373 . . . . . . . 8  |-  ( a  e.  ( 3 ... J )  ->  ( J  -  a )  e.  NN0 )
2220, 21syl 17 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( J  -  a )  e.  NN0 )
23 zexpcl 12875 . . . . . . 7  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( J  -  a )  e. 
NN0 )  ->  (
( A Xrm  N ) ^
( J  -  a
) )  e.  ZZ )
2419, 22, 23syl2anc 693 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Xrm  N ) ^
( J  -  a
) )  e.  ZZ )
25 rmspecnonsq 37472 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  ( NN  \NN ) )
2625eldifad 3586 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  NN )
2726nnzd 11481 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  ZZ )
28273ad2ant1 1082 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A ^ 2 )  -  1 )  e.  ZZ )
29 breq2 4657 . . . . . . . . . . . . . 14  |-  ( b  =  a  ->  (
2  ||  b  <->  2  ||  a ) )
3029notbid 308 . . . . . . . . . . . . 13  |-  ( b  =  a  ->  ( -.  2  ||  b  <->  -.  2  ||  a ) )
3130elrab 3363 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  <->  ( a  e.  ( 3 ... J
)  /\  -.  2  ||  a ) )
3231simprbi 480 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  -.  2  ||  a )
33 1zzd 11408 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  1  e.  ZZ )
34 n2dvds1 15104 . . . . . . . . . . . 12  |-  -.  2  ||  1
3534a1i 11 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  -.  2  ||  1 )
36 omoe 15088 . . . . . . . . . . 11  |-  ( ( ( a  e.  ZZ  /\ 
-.  2  ||  a
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  (
a  -  1 ) )
3710, 32, 33, 35, 36syl22anc 1327 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  2  ||  ( a  -  1 ) )
38 2z 11409 . . . . . . . . . . . 12  |-  2  e.  ZZ
3938a1i 11 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  2  e.  ZZ )
40 2ne0 11113 . . . . . . . . . . . 12  |-  2  =/=  0
4140a1i 11 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  2  =/=  0 )
42 peano2zm 11420 . . . . . . . . . . . 12  |-  ( a  e.  ZZ  ->  (
a  -  1 )  e.  ZZ )
4310, 42syl 17 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  (
a  -  1 )  e.  ZZ )
44 dvdsval2 14986 . . . . . . . . . . 11  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  (
a  -  1 )  e.  ZZ )  -> 
( 2  ||  (
a  -  1 )  <-> 
( ( a  - 
1 )  /  2
)  e.  ZZ ) )
4539, 41, 43, 44syl3anc 1326 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  (
2  ||  ( a  -  1 )  <->  ( (
a  -  1 )  /  2 )  e.  ZZ ) )
4637, 45mpbid 222 . . . . . . . . 9  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  (
( a  -  1 )  /  2 )  e.  ZZ )
4743zred 11482 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  (
a  -  1 )  e.  RR )
48 0red 10041 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( 3 ... J )  ->  0  e.  RR )
49 3re 11094 . . . . . . . . . . . . . . . 16  |-  3  e.  RR
5049a1i 11 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( 3 ... J )  ->  3  e.  RR )
519zred 11482 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( 3 ... J )  ->  a  e.  RR )
52 3pos 11114 . . . . . . . . . . . . . . . 16  |-  0  <  3
5352a1i 11 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( 3 ... J )  ->  0  <  3 )
54 elfzle1 12344 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( 3 ... J )  ->  3  <_  a )
5548, 50, 51, 53, 54ltletrd 10197 . . . . . . . . . . . . . 14  |-  ( a  e.  ( 3 ... J )  ->  0  <  a )
56 elnnz 11387 . . . . . . . . . . . . . 14  |-  ( a  e.  NN  <->  ( a  e.  ZZ  /\  0  < 
a ) )
579, 55, 56sylanbrc 698 . . . . . . . . . . . . 13  |-  ( a  e.  ( 3 ... J )  ->  a  e.  NN )
58 nnm1nn0 11334 . . . . . . . . . . . . 13  |-  ( a  e.  NN  ->  (
a  -  1 )  e.  NN0 )
5957, 58syl 17 . . . . . . . . . . . 12  |-  ( a  e.  ( 3 ... J )  ->  (
a  -  1 )  e.  NN0 )
6059nn0ge0d 11354 . . . . . . . . . . 11  |-  ( a  e.  ( 3 ... J )  ->  0  <_  ( a  -  1 ) )
618, 60syl 17 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  0  <_  ( a  -  1 ) )
62 2re 11090 . . . . . . . . . . 11  |-  2  e.  RR
6362a1i 11 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  2  e.  RR )
64 2pos 11112 . . . . . . . . . . 11  |-  0  <  2
6564a1i 11 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  0  <  2 )
66 divge0 10892 . . . . . . . . . 10  |-  ( ( ( ( a  - 
1 )  e.  RR  /\  0  <_  ( a  -  1 ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <_  ( (
a  -  1 )  /  2 ) )
6747, 61, 63, 65, 66syl22anc 1327 . . . . . . . . 9  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  0  <_  ( ( a  - 
1 )  /  2
) )
68 elnn0z 11390 . . . . . . . . 9  |-  ( ( ( a  -  1 )  /  2 )  e.  NN0  <->  ( ( ( a  -  1 )  /  2 )  e.  ZZ  /\  0  <_ 
( ( a  - 
1 )  /  2
) ) )
6946, 67, 68sylanbrc 698 . . . . . . . 8  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  (
( a  -  1 )  /  2 )  e.  NN0 )
70 zexpcl 12875 . . . . . . . 8  |-  ( ( ( ( A ^
2 )  -  1 )  e.  ZZ  /\  ( ( a  - 
1 )  /  2
)  e.  NN0 )  ->  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  e.  ZZ )
7128, 69, 70syl2an 494 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) )  e.  ZZ )
72 frmy 37479 . . . . . . . . . 10  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
7372fovcl 6765 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
7414, 15, 73syl2anc 693 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( A Yrm 
N )  e.  ZZ )
75 elfzel1 12341 . . . . . . . . . . . 12  |-  ( a  e.  ( 3 ... J )  ->  3  e.  ZZ )
769, 75zsubcld 11487 . . . . . . . . . . 11  |-  ( a  e.  ( 3 ... J )  ->  (
a  -  3 )  e.  ZZ )
77 subge0 10541 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  3  e.  RR )  ->  ( 0  <_  (
a  -  3 )  <->  3  <_  a )
)
7851, 49, 77sylancl 694 . . . . . . . . . . . 12  |-  ( a  e.  ( 3 ... J )  ->  (
0  <_  ( a  -  3 )  <->  3  <_  a ) )
7954, 78mpbird 247 . . . . . . . . . . 11  |-  ( a  e.  ( 3 ... J )  ->  0  <_  ( a  -  3 ) )
80 elnn0z 11390 . . . . . . . . . . 11  |-  ( ( a  -  3 )  e.  NN0  <->  ( ( a  -  3 )  e.  ZZ  /\  0  <_ 
( a  -  3 ) ) )
8176, 79, 80sylanbrc 698 . . . . . . . . . 10  |-  ( a  e.  ( 3 ... J )  ->  (
a  -  3 )  e.  NN0 )
828, 81syl 17 . . . . . . . . 9  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  (
a  -  3 )  e.  NN0 )
8382adantl 482 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
a  -  3 )  e.  NN0 )
84 zexpcl 12875 . . . . . . . 8  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( a  -  3 )  e. 
NN0 )  ->  (
( A Yrm  N ) ^
( a  -  3 ) )  e.  ZZ )
8574, 83, 84syl2anc 693 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Yrm  N ) ^
( a  -  3 ) )  e.  ZZ )
8671, 85zmulcld 11488 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) )  e.  ZZ )
8724, 86zmulcld 11488 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) ) )  e.  ZZ )
8813, 87zmulcld 11488 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  e.  ZZ )
895, 88fsumzcl 14466 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  e.  ZZ )
90733adant3 1081 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Yrm 
N )  e.  ZZ )
91 3nn0 11310 . . . 4  |-  3  e.  NN0
92 zexpcl 12875 . . . 4  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  3  e. 
NN0 )  ->  (
( A Yrm  N ) ^
3 )  e.  ZZ )
9390, 91, 92sylancl 694 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  e.  ZZ )
94 dvdsmul2 15004 . . 3  |-  ( (
sum_ a  e.  {
b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  e.  ZZ  /\  ( ( A Yrm  N ) ^ 3 )  e.  ZZ )  ->  (
( A Yrm  N ) ^
3 )  ||  ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )
9589, 93, 94syl2anc 693 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  ||  ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )
96 jm2.22 37562 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm  ( N  x.  J
) )  =  sum_ a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a )
)  x.  ( ( ( A Yrm  N ) ^
a )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) ) ) ) ) )
976, 96syl3an3 1361 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Yrm  ( N  x.  J
) )  =  sum_ a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a )
)  x.  ( ( ( A Yrm  N ) ^
a )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) ) ) ) ) )
98 1lt3 11196 . . . . . . . . . . . 12  |-  1  <  3
99 1re 10039 . . . . . . . . . . . . 13  |-  1  e.  RR
10099, 49ltnlei 10158 . . . . . . . . . . . 12  |-  ( 1  <  3  <->  -.  3  <_  1 )
10198, 100mpbi 220 . . . . . . . . . . 11  |-  -.  3  <_  1
102 elfzle1 12344 . . . . . . . . . . 11  |-  ( 1  e.  ( 3 ... J )  ->  3  <_  1 )
103101, 102mto 188 . . . . . . . . . 10  |-  -.  1  e.  ( 3 ... J
)
104103a1i 11 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  -.  1  e.  ( 3 ... J ) )
105104intnanrd 963 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  -.  ( 1  e.  ( 3 ... J )  /\  -.  2  ||  1 ) )
106 breq2 4657 . . . . . . . . . 10  |-  ( b  =  1  ->  (
2  ||  b  <->  2  ||  1 ) )
107106notbid 308 . . . . . . . . 9  |-  ( b  =  1  ->  ( -.  2  ||  b  <->  -.  2  ||  1 ) )
108107elrab 3363 . . . . . . . 8  |-  ( 1  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  <->  ( 1  e.  ( 3 ... J )  /\  -.  2  ||  1 ) )
109105, 108sylnibr 319 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  -.  1  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b } )
110 disjsn 4246 . . . . . . 7  |-  ( ( { b  e.  ( 3 ... J )  |  -.  2  ||  b }  i^i  { 1 } )  =  (/)  <->  -.  1  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b } )
111109, 110sylibr 224 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( { b  e.  ( 3 ... J )  |  -.  2  ||  b }  i^i  { 1 } )  =  (/) )
112 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =  1 )  ->  a  =  1 )
113112olcd 408 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =  1 )  ->  ( ( a  e.  ( 3 ... J )  /\  -.  2  ||  a )  \/  a  =  1 ) )
114 elfznn0 12433 . . . . . . . . . . . . . . . 16  |-  ( a  e.  ( 0 ... J )  ->  a  e.  NN0 )
115114adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  ( 0 ... J )  /\  -.  2  ||  a )  ->  a  e.  NN0 )
116115ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
a  e.  NN0 )
117 simplrr 801 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  ->  -.  2  ||  a )
118 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
a  =/=  1 )
119 elnn1uz2 11765 . . . . . . . . . . . . . . . 16  |-  ( a  e.  NN  <->  ( a  =  1  \/  a  e.  ( ZZ>= `  2 )
) )
120 df-ne 2795 . . . . . . . . . . . . . . . . . . . . 21  |-  ( a  =/=  1  <->  -.  a  =  1 )
121120biimpi 206 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  =/=  1  ->  -.  a  =  1 )
1221213ad2ant3 1084 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  e.  NN0  /\  -.  2  ||  a  /\  a  =/=  1 )  ->  -.  a  =  1
)
123122pm2.21d 118 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  e.  NN0  /\  -.  2  ||  a  /\  a  =/=  1 )  -> 
( a  =  1  ->  3  <_  a
) )
124123imp 445 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
1 )  ->  3  <_  a )
125 uzp1 11721 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  ( ZZ>= `  2
)  ->  ( a  =  2  \/  a  e.  ( ZZ>= `  ( 2  +  1 ) ) ) )
126 1z 11407 . . . . . . . . . . . . . . . . . . . . . . 23  |-  1  e.  ZZ
127 dvdsmul1 15003 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 2  e.  ZZ  /\  1  e.  ZZ )  ->  2  ||  ( 2  x.  1 ) )
12838, 126, 127mp2an 708 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  ||  ( 2  x.  1 )
129 2t1e2 11176 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  x.  1 )  =  2
130128, 129breqtri 4678 . . . . . . . . . . . . . . . . . . . . 21  |-  2  ||  2
131 breq2 4657 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( a  =  2  ->  (
2  ||  a  <->  2  ||  2 ) )
132131adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
2 )  ->  (
2  ||  a  <->  2  ||  2 ) )
133130, 132mpbiri 248 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
2 )  ->  2  ||  a )
134 simpl2 1065 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
2 )  ->  -.  2  ||  a )
135133, 134pm2.21dd 186 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
2 )  ->  3  <_  a )
136 eluzle 11700 . . . . . . . . . . . . . . . . . . . . 21  |-  ( a  e.  ( ZZ>= `  3
)  ->  3  <_  a )
137 2p1e3 11151 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  +  1 )  =  3
138137fveq2i 6194 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ZZ>= `  ( 2  +  1 ) )  =  (
ZZ>= `  3 )
139136, 138eleq2s 2719 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  e.  ( ZZ>= `  (
2  +  1 ) )  ->  3  <_  a )
140139adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  e.  ( ZZ>= `  ( 2  +  1 ) ) )  ->  3  <_  a )
141135, 140jaodan 826 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  ( a  =  2  \/  a  e.  ( ZZ>= `  ( 2  +  1 ) ) ) )  ->  3  <_  a )
142125, 141sylan2 491 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  e.  ( ZZ>= `  2 )
)  ->  3  <_  a )
143124, 142jaodan 826 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  ( a  =  1  \/  a  e.  ( ZZ>= `  2 )
) )  ->  3  <_  a )
144119, 143sylan2b 492 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  e.  NN )  ->  3  <_ 
a )
145 dvds0 14997 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  e.  ZZ  ->  2  ||  0 )
14638, 145ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  2  ||  0
147 breq2 4657 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  0  ->  (
2  ||  a  <->  2  ||  0 ) )
148146, 147mpbiri 248 . . . . . . . . . . . . . . . . 17  |-  ( a  =  0  ->  2  ||  a )
149148adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
0 )  ->  2  ||  a )
150 simpl2 1065 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
0 )  ->  -.  2  ||  a )
151149, 150pm2.21dd 186 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
0 )  ->  3  <_  a )
152 elnn0 11294 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  NN0  <->  ( a  e.  NN  \/  a  =  0 ) )
153152biimpi 206 . . . . . . . . . . . . . . . 16  |-  ( a  e.  NN0  ->  ( a  e.  NN  \/  a  =  0 ) )
1541533ad2ant1 1082 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  NN0  /\  -.  2  ||  a  /\  a  =/=  1 )  -> 
( a  e.  NN  \/  a  =  0
) )
155144, 151, 154mpjaodan 827 . . . . . . . . . . . . . 14  |-  ( ( a  e.  NN0  /\  -.  2  ||  a  /\  a  =/=  1 )  -> 
3  <_  a )
156116, 117, 118, 155syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
3  <_  a )
157 elfzle2 12345 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( 0 ... J )  ->  a  <_  J )
158157adantr 481 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ( 0 ... J )  /\  -.  2  ||  a )  ->  a  <_  J
)
159158ad2antlr 763 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
a  <_  J )
160 elfzelz 12342 . . . . . . . . . . . . . . . 16  |-  ( a  e.  ( 0 ... J )  ->  a  e.  ZZ )
161160adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  ( 0 ... J )  /\  -.  2  ||  a )  ->  a  e.  ZZ )
162161ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
a  e.  ZZ )
163 3z 11410 . . . . . . . . . . . . . . 15  |-  3  e.  ZZ
164163a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
3  e.  ZZ )
165 nnz 11399 . . . . . . . . . . . . . . . 16  |-  ( J  e.  NN  ->  J  e.  ZZ )
1661653ad2ant3 1084 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  J  e.  ZZ )
167166ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  ->  J  e.  ZZ )
168 elfz 12332 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ZZ  /\  3  e.  ZZ  /\  J  e.  ZZ )  ->  (
a  e.  ( 3 ... J )  <->  ( 3  <_  a  /\  a  <_  J ) ) )
169162, 164, 167, 168syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
( a  e.  ( 3 ... J )  <-> 
( 3  <_  a  /\  a  <_  J ) ) )
170156, 159, 169mpbir2and 957 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
a  e.  ( 3 ... J ) )
171170, 117jca 554 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
( a  e.  ( 3 ... J )  /\  -.  2  ||  a ) )
172171orcd 407 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
( ( a  e.  ( 3 ... J
)  /\  -.  2  ||  a )  \/  a  =  1 ) )
173113, 172pm2.61dane 2881 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  (
a  e.  ( 0 ... J )  /\  -.  2  ||  a ) )  ->  ( (
a  e.  ( 3 ... J )  /\  -.  2  ||  a )  \/  a  =  1 ) )
174 nn0uz 11722 . . . . . . . . . . . . . . 15  |-  NN0  =  ( ZZ>= `  0 )
17591, 174eleqtri 2699 . . . . . . . . . . . . . 14  |-  3  e.  ( ZZ>= `  0 )
176 fzss1 12380 . . . . . . . . . . . . . 14  |-  ( 3  e.  ( ZZ>= `  0
)  ->  ( 3 ... J )  C_  ( 0 ... J
) )
177175, 176ax-mp 5 . . . . . . . . . . . . 13  |-  ( 3 ... J )  C_  ( 0 ... J
)
178177sseli 3599 . . . . . . . . . . . 12  |-  ( a  e.  ( 3 ... J )  ->  a  e.  ( 0 ... J
) )
179178anim1i 592 . . . . . . . . . . 11  |-  ( ( a  e.  ( 3 ... J )  /\  -.  2  ||  a )  ->  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )
180179adantl 482 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  (
a  e.  ( 3 ... J )  /\  -.  2  ||  a ) )  ->  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )
181 0le1 10551 . . . . . . . . . . . . 13  |-  0  <_  1
182181a1i 11 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
0  <_  1 )
183 nnge1 11046 . . . . . . . . . . . . . 14  |-  ( J  e.  NN  ->  1  <_  J )
1841833ad2ant3 1084 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  1  <_  J )
185184adantr 481 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
1  <_  J )
186 1zzd 11408 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
1  e.  ZZ )
187 0zd 11389 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
0  e.  ZZ )
188166adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  ->  J  e.  ZZ )
189 elfz 12332 . . . . . . . . . . . . 13  |-  ( ( 1  e.  ZZ  /\  0  e.  ZZ  /\  J  e.  ZZ )  ->  (
1  e.  ( 0 ... J )  <->  ( 0  <_  1  /\  1  <_  J ) ) )
190186, 187, 188, 189syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
( 1  e.  ( 0 ... J )  <-> 
( 0  <_  1  /\  1  <_  J ) ) )
191182, 185, 190mpbir2and 957 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
1  e.  ( 0 ... J ) )
19234a1i 11 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  ->  -.  2  ||  1 )
193 eleq1 2689 . . . . . . . . . . . . 13  |-  ( a  =  1  ->  (
a  e.  ( 0 ... J )  <->  1  e.  ( 0 ... J
) ) )
194 breq2 4657 . . . . . . . . . . . . . 14  |-  ( a  =  1  ->  (
2  ||  a  <->  2  ||  1 ) )
195194notbid 308 . . . . . . . . . . . . 13  |-  ( a  =  1  ->  ( -.  2  ||  a  <->  -.  2  ||  1 ) )
196193, 195anbi12d 747 . . . . . . . . . . . 12  |-  ( a  =  1  ->  (
( a  e.  ( 0 ... J )  /\  -.  2  ||  a )  <->  ( 1  e.  ( 0 ... J )  /\  -.  2  ||  1 ) ) )
197196adantl 482 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
( ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a )  <->  ( 1  e.  ( 0 ... J )  /\  -.  2  ||  1 ) ) )
198191, 192, 197mpbir2and 957 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
( a  e.  ( 0 ... J )  /\  -.  2  ||  a ) )
199180, 198jaodan 826 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  (
( a  e.  ( 3 ... J )  /\  -.  2  ||  a )  \/  a  =  1 ) )  ->  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )
200173, 199impbida 877 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( a  e.  ( 0 ... J )  /\  -.  2  ||  a )  <->  ( (
a  e.  ( 3 ... J )  /\  -.  2  ||  a )  \/  a  =  1 ) ) )
20130elrab 3363 . . . . . . . 8  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  <->  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )
202 elun 3753 . . . . . . . . 9  |-  ( a  e.  ( { b  e.  ( 3 ... J )  |  -.  2  ||  b }  u.  { 1 } )  <->  ( a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  \/  a  e.  { 1 } ) )
203 velsn 4193 . . . . . . . . . 10  |-  ( a  e.  { 1 }  <-> 
a  =  1 )
20431, 203orbi12i 543 . . . . . . . . 9  |-  ( ( a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  \/  a  e.  { 1 } )  <->  ( (
a  e.  ( 3 ... J )  /\  -.  2  ||  a )  \/  a  =  1 ) )
205202, 204bitri 264 . . . . . . . 8  |-  ( a  e.  ( { b  e.  ( 3 ... J )  |  -.  2  ||  b }  u.  { 1 } )  <->  ( (
a  e.  ( 3 ... J )  /\  -.  2  ||  a )  \/  a  =  1 ) )
206200, 201, 2053bitr4g 303 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  <->  a  e.  ( { b  e.  ( 3 ... J )  |  -.  2  ||  b }  u.  { 1 } ) ) )
207206eqrdv 2620 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  =  ( { b  e.  ( 3 ... J )  |  -.  2  ||  b }  u.  { 1 } ) )
208 fzfi 12771 . . . . . . . 8  |-  ( 0 ... J )  e. 
Fin
209 ssrab2 3687 . . . . . . . 8  |-  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  C_  ( 0 ... J
)
210 ssfi 8180 . . . . . . . 8  |-  ( ( ( 0 ... J
)  e.  Fin  /\  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  C_  ( 0 ... J ) )  ->  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  e.  Fin )
211208, 209, 210mp2an 708 . . . . . . 7  |-  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  e.  Fin
212211a1i 11 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  e.  Fin )
213209sseli 3599 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  a  e.  ( 0 ... J
) )
214213, 160syl 17 . . . . . . . . 9  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  a  e.  ZZ )
2157, 214, 11syl2an 494 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  ( J  _C  a )  e. 
NN0 )
216215nn0cnd 11353 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  ( J  _C  a )  e.  CC )
217173adant3 1081 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Xrm 
N )  e.  NN0 )
218217nn0cnd 11353 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Xrm 
N )  e.  CC )
219218adantr 481 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  ( A Xrm 
N )  e.  CC )
220213adantl 482 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  a  e.  ( 0 ... J
) )
221 fznn0sub 12373 . . . . . . . . . 10  |-  ( a  e.  ( 0 ... J )  ->  ( J  -  a )  e.  NN0 )
222220, 221syl 17 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  ( J  -  a )  e.  NN0 )
223219, 222expcld 13008 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  (
( A Xrm  N ) ^
( J  -  a
) )  e.  CC )
22490zcnd 11483 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Yrm 
N )  e.  CC )
225213, 114syl 17 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  a  e.  NN0 )
226 expcl 12878 . . . . . . . . . 10  |-  ( ( ( A Yrm  N )  e.  CC  /\  a  e. 
NN0 )  ->  (
( A Yrm  N ) ^
a )  e.  CC )
227224, 225, 226syl2an 494 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  (
( A Yrm  N ) ^
a )  e.  CC )
228 rmspecpos 37481 . . . . . . . . . . . 12  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  RR+ )
229228rpcnd 11874 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  CC )
2302293ad2ant1 1082 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A ^ 2 )  -  1 )  e.  CC )
231201simprbi 480 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  -.  2  ||  a )
232 1zzd 11408 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  1  e.  ZZ )
23334a1i 11 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  -.  2  ||  1 )
234214, 231, 232, 233, 36syl22anc 1327 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  2  ||  ( a  -  1 ) )
23538a1i 11 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  2  e.  ZZ )
23640a1i 11 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  2  =/=  0 )
237214, 42syl 17 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
a  -  1 )  e.  ZZ )
238235, 236, 237, 44syl3anc 1326 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
2  ||  ( a  -  1 )  <->  ( (
a  -  1 )  /  2 )  e.  ZZ ) )
239234, 238mpbid 222 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
( a  -  1 )  /  2 )  e.  ZZ )
240237zred 11482 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
a  -  1 )  e.  RR )
241148a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  ( 0 ... J )  ->  (
a  =  0  -> 
2  ||  a )
)
242241con3dimp 457 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  ( 0 ... J )  /\  -.  2  ||  a )  ->  -.  a  = 
0 )
243201, 242sylbi 207 . . . . . . . . . . . . . . 15  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  -.  a  =  0 )
244225, 153syl 17 . . . . . . . . . . . . . . 15  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
a  e.  NN  \/  a  =  0 ) )
245 orel2 398 . . . . . . . . . . . . . . 15  |-  ( -.  a  =  0  -> 
( ( a  e.  NN  \/  a  =  0 )  ->  a  e.  NN ) )
246243, 244, 245sylc 65 . . . . . . . . . . . . . 14  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  a  e.  NN )
247246, 58syl 17 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
a  -  1 )  e.  NN0 )
248247nn0ge0d 11354 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  0  <_  ( a  -  1 ) )
24962a1i 11 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  2  e.  RR )
25064a1i 11 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  0  <  2 )
251240, 248, 249, 250, 66syl22anc 1327 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  0  <_  ( ( a  - 
1 )  /  2
) )
252239, 251, 68sylanbrc 698 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
( a  -  1 )  /  2 )  e.  NN0 )
253 expcl 12878 . . . . . . . . . 10  |-  ( ( ( ( A ^
2 )  -  1 )  e.  CC  /\  ( ( a  - 
1 )  /  2
)  e.  NN0 )  ->  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  e.  CC )
254230, 252, 253syl2an 494 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) )  e.  CC )
255227, 254mulcld 10060 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) )  e.  CC )
256223, 255mulcld 10060 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) ) ) )  e.  CC )
257216, 256mulcld 10060 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) ) )  e.  CC )
258111, 207, 212, 257fsumsplit 14471 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  sum_ a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) ) )  =  (
sum_ a  e.  {
b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) ) )  +  sum_ a  e.  { 1 }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) ) ) ) )
259 expcl 12878 . . . . . . . . 9  |-  ( ( ( A Yrm  N )  e.  CC  /\  3  e. 
NN0 )  ->  (
( A Yrm  N ) ^
3 )  e.  CC )
260224, 91, 259sylancl 694 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  e.  CC )
26188zcnd 11483 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  e.  CC )
2625, 260, 261fsummulc1 14517 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )
26312nn0cnd 11353 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( J  _C  a )  e.  CC )
264218adantr 481 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( A Xrm 
N )  e.  CC )
265264, 22expcld 13008 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Xrm  N ) ^
( J  -  a
) )  e.  CC )
266230, 69, 253syl2an 494 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) )  e.  CC )
267 expcl 12878 . . . . . . . . . . . . 13  |-  ( ( ( A Yrm  N )  e.  CC  /\  ( a  -  3 )  e. 
NN0 )  ->  (
( A Yrm  N ) ^
( a  -  3 ) )  e.  CC )
268224, 82, 267syl2an 494 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Yrm  N ) ^
( a  -  3 ) )  e.  CC )
269266, 268mulcld 10060 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) )  e.  CC )
270265, 269mulcld 10060 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) ) )  e.  CC )
271260adantr 481 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Yrm  N ) ^
3 )  e.  CC )
272263, 270, 271mulassd 10063 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( J  _C  a )  x.  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( J  _C  a
)  x.  ( ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) ) )
273265, 269, 271mulassd 10063 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) ) )
274266, 268, 271mulassd 10063 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( ( A Yrm  N ) ^ ( a  -  3 ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) ) )
275268, 271mulcld 10060 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Yrm  N ) ^ ( a  - 
3 ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  e.  CC )
276266, 275mulcomd 10061 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( ( A Yrm  N ) ^
( a  -  3 ) )  x.  (
( A Yrm  N ) ^
3 ) ) )  =  ( ( ( ( A Yrm  N ) ^
( a  -  3 ) )  x.  (
( A Yrm  N ) ^
3 ) )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) )
277224adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( A Yrm 
N )  e.  CC )
27891a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  3  e.  NN0 )
279277, 278, 83expaddd 13010 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Yrm  N ) ^
( ( a  - 
3 )  +  3 ) )  =  ( ( ( A Yrm  N ) ^ ( a  - 
3 ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )
28010adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  a  e.  ZZ )
281280zcnd 11483 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  a  e.  CC )
282 3cn 11095 . . . . . . . . . . . . . . . . 17  |-  3  e.  CC
283 npcan 10290 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  CC  /\  3  e.  CC )  ->  ( ( a  - 
3 )  +  3 )  =  a )
284281, 282, 283sylancl 694 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( a  -  3 )  +  3 )  =  a )
285284oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Yrm  N ) ^
( ( a  - 
3 )  +  3 ) )  =  ( ( A Yrm  N ) ^
a ) )
286279, 285eqtr3d 2658 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Yrm  N ) ^ ( a  - 
3 ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( A Yrm  N ) ^ a ) )
287286oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( A Yrm  N ) ^ ( a  -  3 ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) )  =  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) )
288274, 276, 2873eqtrd 2660 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) )
289288oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) ) ) ) )
290273, 289eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) ) ) ) )
291290oveq2d 6666 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( J  _C  a
)  x.  ( ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )  =  ( ( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) ) ) )
292272, 291eqtrd 2656 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( J  _C  a )  x.  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) ) ) )
293292sumeq2dv 14433 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) ) ) )
294262, 293eqtr2d 2657 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) ) )  =  (
sum_ a  e.  {
b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  x.  (
( A Yrm  N ) ^
3 ) ) )
295 1nn 11031 . . . . . . 7  |-  1  e.  NN
296 bccl 13109 . . . . . . . . . . 11  |-  ( ( J  e.  NN0  /\  1  e.  ZZ )  ->  ( J  _C  1
)  e.  NN0 )
2976, 126, 296sylancl 694 . . . . . . . . . 10  |-  ( J  e.  NN  ->  ( J  _C  1 )  e. 
NN0 )
298297nn0cnd 11353 . . . . . . . . 9  |-  ( J  e.  NN  ->  ( J  _C  1 )  e.  CC )
2992983ad2ant3 1084 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( J  _C  1 )  e.  CC )
300 nnm1nn0 11334 . . . . . . . . . . 11  |-  ( J  e.  NN  ->  ( J  -  1 )  e.  NN0 )
3013003ad2ant3 1084 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( J  -  1 )  e.  NN0 )
302218, 301expcld 13008 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Xrm  N ) ^
( J  -  1 ) )  e.  CC )
303 1nn0 11308 . . . . . . . . . . 11  |-  1  e.  NN0
304 expcl 12878 . . . . . . . . . . 11  |-  ( ( ( A Yrm  N )  e.  CC  /\  1  e. 
NN0 )  ->  (
( A Yrm  N ) ^
1 )  e.  CC )
305224, 303, 304sylancl 694 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
1 )  e.  CC )
306 1m1e0 11089 . . . . . . . . . . . . . 14  |-  ( 1  -  1 )  =  0
307306oveq1i 6660 . . . . . . . . . . . . 13  |-  ( ( 1  -  1 )  /  2 )  =  ( 0  /  2
)
308 2cn 11091 . . . . . . . . . . . . . 14  |-  2  e.  CC
309308, 40div0i 10759 . . . . . . . . . . . . 13  |-  ( 0  /  2 )  =  0
310307, 309eqtri 2644 . . . . . . . . . . . 12  |-  ( ( 1  -  1 )  /  2 )  =  0
311 0nn0 11307 . . . . . . . . . . . 12  |-  0  e.  NN0
312310, 311eqeltri 2697 . . . . . . . . . . 11  |-  ( ( 1  -  1 )  /  2 )  e. 
NN0
313 expcl 12878 . . . . . . . . . . 11  |-  ( ( ( ( A ^
2 )  -  1 )  e.  CC  /\  ( ( 1  -  1 )  /  2
)  e.  NN0 )  ->  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) )  e.  CC )
314230, 312, 313sylancl 694 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( 1  -  1 )  /  2 ) )  e.  CC )
315305, 314mulcld 10060 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) )  e.  CC )
316302, 315mulcld 10060 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) ) )  e.  CC )
317299, 316mulcld 10060 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( J  _C  1
)  x.  ( ( ( A Xrm  N ) ^
( J  -  1 ) )  x.  (
( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) ) ) )  e.  CC )
318 oveq2 6658 . . . . . . . . 9  |-  ( a  =  1  ->  ( J  _C  a )  =  ( J  _C  1
) )
319 oveq2 6658 . . . . . . . . . . 11  |-  ( a  =  1  ->  ( J  -  a )  =  ( J  - 
1 ) )
320319oveq2d 6666 . . . . . . . . . 10  |-  ( a  =  1  ->  (
( A Xrm  N ) ^
( J  -  a
) )  =  ( ( A Xrm  N ) ^
( J  -  1 ) ) )
321 oveq2 6658 . . . . . . . . . . 11  |-  ( a  =  1  ->  (
( A Yrm  N ) ^
a )  =  ( ( A Yrm  N ) ^
1 ) )
322 oveq1 6657 . . . . . . . . . . . . 13  |-  ( a  =  1  ->  (
a  -  1 )  =  ( 1  -  1 ) )
323322oveq1d 6665 . . . . . . . . . . . 12  |-  ( a  =  1  ->  (
( a  -  1 )  /  2 )  =  ( ( 1  -  1 )  / 
2 ) )
324323oveq2d 6666 . . . . . . . . . . 11  |-  ( a  =  1  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) )  =  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) )
325321, 324oveq12d 6668 . . . . . . . . . 10  |-  ( a  =  1  ->  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) )  =  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) ) )
326320, 325oveq12d 6668 . . . . . . . . 9  |-  ( a  =  1  ->  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) ) ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  1 ) )  x.  ( ( ( A Yrm  N ) ^
1 )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( 1  -  1 )  /  2 ) ) ) ) )
327318, 326oveq12d 6668 . . . . . . . 8  |-  ( a  =  1  ->  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) ) )  =  ( ( J  _C  1 )  x.  ( ( ( A Xrm  N ) ^ ( J  -  1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( 1  -  1 )  / 
2 ) ) ) ) ) )
328327sumsn 14475 . . . . . . 7  |-  ( ( 1  e.  NN  /\  ( ( J  _C  1 )  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) ) ) )  e.  CC )  ->  sum_ a  e.  {
1 }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a )
)  x.  ( ( ( A Yrm  N ) ^
a )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) ) ) ) )  =  ( ( J  _C  1 )  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) ) ) ) )
329295, 317, 328sylancr 695 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  sum_ a  e.  { 1 }  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) ) )  =  ( ( J  _C  1 )  x.  ( ( ( A Xrm  N ) ^ ( J  -  1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( 1  -  1 )  / 
2 ) ) ) ) ) )
330294, 329oveq12d 6668 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) ) )  +  sum_ a  e.  {
1 }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a )
)  x.  ( ( ( A Yrm  N ) ^
a )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) ) ) ) ) )  =  ( ( sum_ a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a )
)  x.  ( ( ( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ ( a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  +  ( ( J  _C  1 )  x.  ( ( ( A Xrm  N ) ^ ( J  -  1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( 1  -  1 )  / 
2 ) ) ) ) ) ) )
33197, 258, 3303eqtrd 2660 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Yrm  ( N  x.  J
) )  =  ( ( sum_ a  e.  {
b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  x.  (
( A Yrm  N ) ^
3 ) )  +  ( ( J  _C  1 )  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) ) ) ) ) )
332 bcn1 13100 . . . . . . 7  |-  ( J  e.  NN0  ->  ( J  _C  1 )  =  J )
3337, 332syl 17 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( J  _C  1 )  =  J )
334333eqcomd 2628 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  J  =  ( J  _C  1 ) )
335224exp1d 13003 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
1 )  =  ( A Yrm  N ) )
336310a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( 1  -  1 )  /  2 )  =  0 )
337336oveq2d 6666 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( 1  -  1 )  /  2 ) )  =  ( ( ( A ^ 2 )  -  1 ) ^
0 ) )
338230exp0d 13002 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A ^
2 )  -  1 ) ^ 0 )  =  1 )
339337, 338eqtrd 2656 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( 1  -  1 )  /  2 ) )  =  1 )
340335, 339oveq12d 6668 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) )  =  ( ( A Yrm  N )  x.  1 ) )
341224mulid1d 10057 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N )  x.  1 )  =  ( A Yrm  N ) )
342340, 341eqtr2d 2657 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Yrm 
N )  =  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) ) )
343342oveq2d 6666 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( A Yrm  N ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  1 ) )  x.  ( ( ( A Yrm  N ) ^
1 )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( 1  -  1 )  /  2 ) ) ) ) )
344334, 343oveq12d 6668 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( J  x.  ( (
( A Xrm  N ) ^
( J  -  1 ) )  x.  ( A Yrm 
N ) ) )  =  ( ( J  _C  1 )  x.  ( ( ( A Xrm  N ) ^ ( J  -  1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( 1  -  1 )  / 
2 ) ) ) ) ) )
345331, 344oveq12d 6668 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  ( N  x.  J ) )  -  ( J  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( A Yrm  N ) ) ) )  =  ( ( ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  x.  (
( A Yrm  N ) ^
3 ) )  +  ( ( J  _C  1 )  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) ) ) ) )  -  (
( J  _C  1
)  x.  ( ( ( A Xrm  N ) ^
( J  -  1 ) )  x.  (
( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) ) ) ) ) )
3465, 261fsumcl 14464 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  e.  CC )
347346, 260mulcld 10060 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  e.  CC )
348347, 317pncand 10393 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  x.  (
( A Yrm  N ) ^
3 ) )  +  ( ( J  _C  1 )  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) ) ) ) )  -  (
( J  _C  1
)  x.  ( ( ( A Xrm  N ) ^
( J  -  1 ) )  x.  (
( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) ) ) ) )  =  ( sum_ a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a )
)  x.  ( ( ( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ ( a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )
349345, 348eqtrd 2656 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  ( N  x.  J ) )  -  ( J  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( A Yrm  N ) ) ) )  =  (
sum_ a  e.  {
b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  x.  (
( A Yrm  N ) ^
3 ) ) )
35095, 349breqtrrd 4681 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  ||  (
( A Yrm  ( N  x.  J ) )  -  ( J  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   ^cexp 12860    _C cbc 13089   sum_csu 14416    || cdvds 14983  ◻NNcsquarenn 37400   Xrm crmx 37464   Yrm crmy 37465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-numer 15443  df-denom 15444  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-squarenn 37405  df-pell1qr 37406  df-pell14qr 37407  df-pell1234qr 37408  df-pellfund 37409  df-rmx 37466  df-rmy 37467
This theorem is referenced by:  jm2.20nn  37564
  Copyright terms: Public domain W3C validator