MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgs Structured version   Visualization version   Unicode version

Theorem 2lgs 25132
Description: The second supplement to the law of quadratic reciprocity (for the Legendre symbol extended to arbitrary primes as second argument). Two is a square modulo a prime 
P iff  P  ==  pm 1 (mod  8), see first case of theorem 9.5 in [ApostolNT] p. 181. This theorem justifies our definition of  ( N  /L 2 ) (lgs2 25039) to some degree, by demanding that reciprocity extend to the case  Q  =  2. (Proposed by Mario Carneiro, 19-Jun-2015.) (Contributed by AV, 16-Jul-2021.)
Assertion
Ref Expression
2lgs  |-  ( P  e.  Prime  ->  ( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )

Proof of Theorem 2lgs
Dummy variables  i  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prm2orodd 15404 . 2  |-  ( P  e.  Prime  ->  ( P  =  2  \/  -.  2  ||  P ) )
2 2lgslem4 25131 . . . . . 6  |-  ( ( 2  /L 2 )  =  1  <->  (
2  mod  8 )  e.  { 1 ,  7 } )
32a1i 11 . . . . 5  |-  ( P  =  2  ->  (
( 2  /L 2 )  =  1  <-> 
( 2  mod  8
)  e.  { 1 ,  7 } ) )
4 oveq2 6658 . . . . . 6  |-  ( P  =  2  ->  (
2  /L P )  =  ( 2  /L 2 ) )
54eqeq1d 2624 . . . . 5  |-  ( P  =  2  ->  (
( 2  /L
P )  =  1  <-> 
( 2  /L 2 )  =  1 ) )
6 oveq1 6657 . . . . . 6  |-  ( P  =  2  ->  ( P  mod  8 )  =  ( 2  mod  8
) )
76eleq1d 2686 . . . . 5  |-  ( P  =  2  ->  (
( P  mod  8
)  e.  { 1 ,  7 }  <->  ( 2  mod  8 )  e. 
{ 1 ,  7 } ) )
83, 5, 73bitr4d 300 . . . 4  |-  ( P  =  2  ->  (
( 2  /L
P )  =  1  <-> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
98a1d 25 . . 3  |-  ( P  =  2  ->  ( P  e.  Prime  ->  (
( 2  /L
P )  =  1  <-> 
( P  mod  8
)  e.  { 1 ,  7 } ) ) )
10 2prm 15405 . . . . . . . . . 10  |-  2  e.  Prime
11 prmnn 15388 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
12 dvdsprime 15400 . . . . . . . . . 10  |-  ( ( 2  e.  Prime  /\  P  e.  NN )  ->  ( P  ||  2  <->  ( P  =  2  \/  P  =  1 ) ) )
1310, 11, 12sylancr 695 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( P 
||  2  <->  ( P  =  2  \/  P  =  1 ) ) )
14 z2even 15106 . . . . . . . . . . . . 13  |-  2  ||  2
15 breq2 4657 . . . . . . . . . . . . 13  |-  ( P  =  2  ->  (
2  ||  P  <->  2  ||  2 ) )
1614, 15mpbiri 248 . . . . . . . . . . . 12  |-  ( P  =  2  ->  2  ||  P )
1716a1d 25 . . . . . . . . . . 11  |-  ( P  =  2  ->  ( P  e.  Prime  ->  2  ||  P ) )
18 eleq1 2689 . . . . . . . . . . . 12  |-  ( P  =  1  ->  ( P  e.  Prime  <->  1  e.  Prime ) )
19 1nprm 15392 . . . . . . . . . . . . 13  |-  -.  1  e.  Prime
2019pm2.21i 116 . . . . . . . . . . . 12  |-  ( 1  e.  Prime  ->  2  ||  P )
2118, 20syl6bi 243 . . . . . . . . . . 11  |-  ( P  =  1  ->  ( P  e.  Prime  ->  2  ||  P ) )
2217, 21jaoi 394 . . . . . . . . . 10  |-  ( ( P  =  2  \/  P  =  1 )  ->  ( P  e. 
Prime  ->  2  ||  P
) )
2322com12 32 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( ( P  =  2  \/  P  =  1 )  ->  2  ||  P
) )
2413, 23sylbid 230 . . . . . . . 8  |-  ( P  e.  Prime  ->  ( P 
||  2  ->  2  ||  P ) )
2524con3dimp 457 . . . . . . 7  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  ->  -.  P  ||  2 )
26 2z 11409 . . . . . . 7  |-  2  e.  ZZ
2725, 26jctil 560 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( 2  e.  ZZ  /\ 
-.  P  ||  2
) )
28 2lgslem1 25119 . . . . . . 7  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( # `  { x  e.  ZZ  |  E. i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2 )  < 
( x  mod  P
) ) } )  =  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) )
2928eqcomd 2628 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( # `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )
30 nnoddn2prmb 15518 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  <->  ( P  e.  Prime  /\  -.  2  ||  P ) )
3130biimpri 218 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  ->  P  e.  ( Prime  \  { 2 } ) )
32313ad2ant1 1082 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  ( 2  e.  ZZ  /\  -.  P  ||  2 )  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( # `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )  ->  P  e.  ( Prime  \  { 2 } ) )
33 eqid 2622 . . . . . . . 8  |-  ( ( P  -  1 )  /  2 )  =  ( ( P  - 
1 )  /  2
)
34 eqid 2622 . . . . . . . 8  |-  ( y  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  if ( ( y  x.  2 )  <  ( P  /  2 ) ,  ( y  x.  2 ) ,  ( P  -  ( y  x.  2 ) ) ) )  =  ( y  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  if ( ( y  x.  2 )  <  ( P  /  2 ) ,  ( y  x.  2 ) ,  ( P  -  ( y  x.  2 ) ) ) )
35 eqid 2622 . . . . . . . 8  |-  ( |_
`  ( P  / 
4 ) )  =  ( |_ `  ( P  /  4 ) )
36 eqid 2622 . . . . . . . 8  |-  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) )  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
3732, 33, 34, 35, 36gausslemma2d 25099 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  ( 2  e.  ZZ  /\  -.  P  ||  2 )  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( # `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) ) ) )
3837eqeq1d 2624 . . . . . 6  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  ( 2  e.  ZZ  /\  -.  P  ||  2 )  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( # `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )  ->  (
( 2  /L
P )  =  1  <-> 
( -u 1 ^ (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) ) )  =  1 ) )
3927, 29, 38mpd3an23 1426 . . . . 5  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( 2  /L P )  =  1  <->  ( -u 1 ^ ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) )  =  1 ) )
40362lgslem2 25120 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  e.  ZZ )
41 m1exp1 15093 . . . . . 6  |-  ( ( ( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  e.  ZZ  ->  (
( -u 1 ^ (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) ) )  =  1  <->  2 
||  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) ) )
4240, 41syl 17 . . . . 5  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( -u 1 ^ ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) )  =  1  <->  2  ||  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) ) ) )
43 2nn 11185 . . . . . . 7  |-  2  e.  NN
44 dvdsval3 14987 . . . . . . 7  |-  ( ( 2  e.  NN  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  e.  ZZ )  -> 
( 2  ||  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  <-> 
( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )  mod  2 )  =  0 ) )
4543, 40, 44sylancr 695 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( 2  ||  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  <-> 
( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )  mod  2 )  =  0 ) )
46362lgslem3 25129 . . . . . . . 8  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) )  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) )
4711, 46sylan 488 . . . . . . 7  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )  mod  2 )  =  if ( ( P  mod  8 )  e.  { 1 ,  7 } ,  0 ,  1 ) )
4847eqeq1d 2624 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) )  mod  2 )  =  0  <-> 
if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 )  =  0 ) )
49 ax-1 6 . . . . . . . . 9  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  ( if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0  -> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
50 iffalse 4095 . . . . . . . . . . 11  |-  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  1 )
5150eqeq1d 2624 . . . . . . . . . 10  |-  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 )  =  0  <->  1  =  0 ) )
52 ax-1ne0 10005 . . . . . . . . . . 11  |-  1  =/=  0
53 eqneqall 2805 . . . . . . . . . . 11  |-  ( 1  =  0  ->  (
1  =/=  0  -> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
5452, 53mpi 20 . . . . . . . . . 10  |-  ( 1  =  0  ->  ( P  mod  8 )  e. 
{ 1 ,  7 } )
5551, 54syl6bi 243 . . . . . . . . 9  |-  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 )  =  0  ->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
5649, 55pm2.61i 176 . . . . . . . 8  |-  ( if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0  -> 
( P  mod  8
)  e.  { 1 ,  7 } )
57 iftrue 4092 . . . . . . . 8  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0 )
5856, 57impbii 199 . . . . . . 7  |-  ( if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } )
5958a1i 11 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( if ( ( P  mod  8 )  e.  { 1 ,  7 } ,  0 ,  1 )  =  0  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
6045, 48, 593bitrd 294 . . . . 5  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( 2  ||  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  <-> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
6139, 42, 603bitrd 294 . . . 4  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
6261expcom 451 . . 3  |-  ( -.  2  ||  P  -> 
( P  e.  Prime  -> 
( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) ) )
639, 62jaoi 394 . 2  |-  ( ( P  =  2  \/ 
-.  2  ||  P
)  ->  ( P  e.  Prime  ->  ( (
2  /L P )  =  1  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) ) )
641, 63mpcom 38 1  |-  ( P  e.  Prime  ->  ( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916    \ cdif 3571   ifcif 4086   {csn 4177   {cpr 4179   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   4c4 11072   7c7 11075   8c8 11076   ZZcz 11377   ...cfz 12326   |_cfl 12591    mod cmo 12668   ^cexp 12860   #chash 13117    || cdvds 14983   Primecprime 15385    /Lclgs 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-pc 15542  df-lgs 25020
This theorem is referenced by:  2lgsoddprm  25141  fmtnoprmfac2lem1  41478  sfprmdvdsmersenne  41520
  Copyright terms: Public domain W3C validator