MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramer0 Structured version   Visualization version   Unicode version

Theorem cramer0 20496
Description: Special case of Cramer's rule for 0-dimensional matrices/vectors. (Contributed by AV, 28-Feb-2019.)
Hypotheses
Ref Expression
cramer.a  |-  A  =  ( N Mat  R )
cramer.b  |-  B  =  ( Base `  A
)
cramer.v  |-  V  =  ( ( Base `  R
)  ^m  N )
cramer.d  |-  D  =  ( N maDet  R )
cramer.x  |-  .x.  =  ( R maVecMul  <. N ,  N >. )
cramer.q  |-  ./  =  (/r
`  R )
Assertion
Ref Expression
cramer0  |-  ( ( ( N  =  (/)  /\  R  e.  CRing )  /\  ( X  e.  B  /\  Y  e.  V
)  /\  ( D `  X )  e.  (Unit `  R ) )  -> 
( Z  =  ( i  e.  N  |->  ( ( D `  (
( X ( N matRepV  R ) Y ) `
 i ) ) 
./  ( D `  X ) ) )  ->  ( X  .x.  Z )  =  Y ) )
Distinct variable groups:    B, i    D, i    i, N    R, i    i, V    i, X    i, Y    i, Z    .x. , i    ./ , i
Allowed substitution hint:    A( i)

Proof of Theorem cramer0
StepHypRef Expression
1 cramer.b . . . . . . . . 9  |-  B  =  ( Base `  A
)
2 cramer.a . . . . . . . . . 10  |-  A  =  ( N Mat  R )
32fveq2i 6194 . . . . . . . . 9  |-  ( Base `  A )  =  (
Base `  ( N Mat  R ) )
41, 3eqtri 2644 . . . . . . . 8  |-  B  =  ( Base `  ( N Mat  R ) )
5 oveq1 6657 . . . . . . . . 9  |-  ( N  =  (/)  ->  ( N Mat 
R )  =  (
(/) Mat  R ) )
65fveq2d 6195 . . . . . . . 8  |-  ( N  =  (/)  ->  ( Base `  ( N Mat  R ) )  =  ( Base `  ( (/) Mat  R )
) )
74, 6syl5eq 2668 . . . . . . 7  |-  ( N  =  (/)  ->  B  =  ( Base `  ( (/) Mat  R ) ) )
87adantr 481 . . . . . 6  |-  ( ( N  =  (/)  /\  R  e.  CRing )  ->  B  =  ( Base `  ( (/) Mat  R ) ) )
98eleq2d 2687 . . . . 5  |-  ( ( N  =  (/)  /\  R  e.  CRing )  ->  ( X  e.  B  <->  X  e.  ( Base `  ( (/) Mat  R ) ) ) )
10 mat0dimbas0 20272 . . . . . . 7  |-  ( R  e.  CRing  ->  ( Base `  ( (/) Mat  R )
)  =  { (/) } )
1110eleq2d 2687 . . . . . 6  |-  ( R  e.  CRing  ->  ( X  e.  ( Base `  ( (/) Mat  R ) )  <->  X  e.  {
(/) } ) )
1211adantl 482 . . . . 5  |-  ( ( N  =  (/)  /\  R  e.  CRing )  ->  ( X  e.  ( Base `  ( (/) Mat  R )
)  <->  X  e.  { (/) } ) )
139, 12bitrd 268 . . . 4  |-  ( ( N  =  (/)  /\  R  e.  CRing )  ->  ( X  e.  B  <->  X  e.  {
(/) } ) )
14 cramer.v . . . . . . . 8  |-  V  =  ( ( Base `  R
)  ^m  N )
1514a1i 11 . . . . . . 7  |-  ( ( N  =  (/)  /\  R  e.  CRing )  ->  V  =  ( ( Base `  R )  ^m  N
) )
16 oveq2 6658 . . . . . . . 8  |-  ( N  =  (/)  ->  ( (
Base `  R )  ^m  N )  =  ( ( Base `  R
)  ^m  (/) ) )
1716adantr 481 . . . . . . 7  |-  ( ( N  =  (/)  /\  R  e.  CRing )  ->  (
( Base `  R )  ^m  N )  =  ( ( Base `  R
)  ^m  (/) ) )
18 fvex 6201 . . . . . . . 8  |-  ( Base `  R )  e.  _V
19 map0e 7895 . . . . . . . 8  |-  ( (
Base `  R )  e.  _V  ->  ( ( Base `  R )  ^m  (/) )  =  1o )
2018, 19mp1i 13 . . . . . . 7  |-  ( ( N  =  (/)  /\  R  e.  CRing )  ->  (
( Base `  R )  ^m  (/) )  =  1o )
2115, 17, 203eqtrd 2660 . . . . . 6  |-  ( ( N  =  (/)  /\  R  e.  CRing )  ->  V  =  1o )
2221eleq2d 2687 . . . . 5  |-  ( ( N  =  (/)  /\  R  e.  CRing )  ->  ( Y  e.  V  <->  Y  e.  1o ) )
23 el1o 7579 . . . . 5  |-  ( Y  e.  1o  <->  Y  =  (/) )
2422, 23syl6bb 276 . . . 4  |-  ( ( N  =  (/)  /\  R  e.  CRing )  ->  ( Y  e.  V  <->  Y  =  (/) ) )
2513, 24anbi12d 747 . . 3  |-  ( ( N  =  (/)  /\  R  e.  CRing )  ->  (
( X  e.  B  /\  Y  e.  V
)  <->  ( X  e. 
{ (/) }  /\  Y  =  (/) ) ) )
26 elsni 4194 . . . 4  |-  ( X  e.  { (/) }  ->  X  =  (/) )
27 mpteq1 4737 . . . . . . . . . 10  |-  ( N  =  (/)  ->  ( i  e.  N  |->  ( ( D `  ( ( X ( N matRepV  R
) Y ) `  i ) )  ./  ( D `  X ) ) )  =  ( i  e.  (/)  |->  ( ( D `  ( ( X ( N matRepV  R
) Y ) `  i ) )  ./  ( D `  X ) ) ) )
28 mpt0 6021 . . . . . . . . . 10  |-  ( i  e.  (/)  |->  ( ( D `
 ( ( X ( N matRepV  R ) Y ) `  i
) )  ./  ( D `  X )
) )  =  (/)
2927, 28syl6eq 2672 . . . . . . . . 9  |-  ( N  =  (/)  ->  ( i  e.  N  |->  ( ( D `  ( ( X ( N matRepV  R
) Y ) `  i ) )  ./  ( D `  X ) ) )  =  (/) )
3029eqeq2d 2632 . . . . . . . 8  |-  ( N  =  (/)  ->  ( Z  =  ( i  e.  N  |->  ( ( D `
 ( ( X ( N matRepV  R ) Y ) `  i
) )  ./  ( D `  X )
) )  <->  Z  =  (/) ) )
3130ad2antrr 762 . . . . . . 7  |-  ( ( ( N  =  (/)  /\  R  e.  CRing )  /\  ( X  =  (/)  /\  Y  =  (/) ) )  -> 
( Z  =  ( i  e.  N  |->  ( ( D `  (
( X ( N matRepV  R ) Y ) `
 i ) ) 
./  ( D `  X ) ) )  <-> 
Z  =  (/) ) )
32 simplrl 800 . . . . . . . . . 10  |-  ( ( ( ( N  =  (/)  /\  R  e.  CRing )  /\  ( X  =  (/)  /\  Y  =  (/) ) )  /\  Z  =  (/) )  ->  X  =  (/) )
33 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( N  =  (/)  /\  R  e.  CRing )  /\  ( X  =  (/)  /\  Y  =  (/) ) )  /\  Z  =  (/) )  ->  Z  =  (/) )
3432, 33oveq12d 6668 . . . . . . . . 9  |-  ( ( ( ( N  =  (/)  /\  R  e.  CRing )  /\  ( X  =  (/)  /\  Y  =  (/) ) )  /\  Z  =  (/) )  ->  ( X  .x.  Z )  =  ( (/)  .x.  (/) ) )
35 cramer.x . . . . . . . . . . 11  |-  .x.  =  ( R maVecMul  <. N ,  N >. )
3635mavmul0 20358 . . . . . . . . . 10  |-  ( ( N  =  (/)  /\  R  e.  CRing )  ->  ( (/) 
.x.  (/) )  =  (/) )
3736ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( N  =  (/)  /\  R  e.  CRing )  /\  ( X  =  (/)  /\  Y  =  (/) ) )  /\  Z  =  (/) )  ->  ( (/) 
.x.  (/) )  =  (/) )
38 simpr 477 . . . . . . . . . . 11  |-  ( ( X  =  (/)  /\  Y  =  (/) )  ->  Y  =  (/) )
3938eqcomd 2628 . . . . . . . . . 10  |-  ( ( X  =  (/)  /\  Y  =  (/) )  ->  (/)  =  Y )
4039ad2antlr 763 . . . . . . . . 9  |-  ( ( ( ( N  =  (/)  /\  R  e.  CRing )  /\  ( X  =  (/)  /\  Y  =  (/) ) )  /\  Z  =  (/) )  ->  (/)  =  Y )
4134, 37, 403eqtrd 2660 . . . . . . . 8  |-  ( ( ( ( N  =  (/)  /\  R  e.  CRing )  /\  ( X  =  (/)  /\  Y  =  (/) ) )  /\  Z  =  (/) )  ->  ( X  .x.  Z )  =  Y )
4241ex 450 . . . . . . 7  |-  ( ( ( N  =  (/)  /\  R  e.  CRing )  /\  ( X  =  (/)  /\  Y  =  (/) ) )  -> 
( Z  =  (/)  ->  ( X  .x.  Z
)  =  Y ) )
4331, 42sylbid 230 . . . . . 6  |-  ( ( ( N  =  (/)  /\  R  e.  CRing )  /\  ( X  =  (/)  /\  Y  =  (/) ) )  -> 
( Z  =  ( i  e.  N  |->  ( ( D `  (
( X ( N matRepV  R ) Y ) `
 i ) ) 
./  ( D `  X ) ) )  ->  ( X  .x.  Z )  =  Y ) )
4443a1d 25 . . . . 5  |-  ( ( ( N  =  (/)  /\  R  e.  CRing )  /\  ( X  =  (/)  /\  Y  =  (/) ) )  -> 
( ( D `  X )  e.  (Unit `  R )  ->  ( Z  =  ( i  e.  N  |->  ( ( D `  ( ( X ( N matRepV  R
) Y ) `  i ) )  ./  ( D `  X ) ) )  ->  ( X  .x.  Z )  =  Y ) ) )
4544ex 450 . . . 4  |-  ( ( N  =  (/)  /\  R  e.  CRing )  ->  (
( X  =  (/)  /\  Y  =  (/) )  -> 
( ( D `  X )  e.  (Unit `  R )  ->  ( Z  =  ( i  e.  N  |->  ( ( D `  ( ( X ( N matRepV  R
) Y ) `  i ) )  ./  ( D `  X ) ) )  ->  ( X  .x.  Z )  =  Y ) ) ) )
4626, 45sylani 686 . . 3  |-  ( ( N  =  (/)  /\  R  e.  CRing )  ->  (
( X  e.  { (/)
}  /\  Y  =  (/) )  ->  ( ( D `  X )  e.  (Unit `  R )  ->  ( Z  =  ( i  e.  N  |->  ( ( D `  (
( X ( N matRepV  R ) Y ) `
 i ) ) 
./  ( D `  X ) ) )  ->  ( X  .x.  Z )  =  Y ) ) ) )
4725, 46sylbid 230 . 2  |-  ( ( N  =  (/)  /\  R  e.  CRing )  ->  (
( X  e.  B  /\  Y  e.  V
)  ->  ( ( D `  X )  e.  (Unit `  R )  ->  ( Z  =  ( i  e.  N  |->  ( ( D `  (
( X ( N matRepV  R ) Y ) `
 i ) ) 
./  ( D `  X ) ) )  ->  ( X  .x.  Z )  =  Y ) ) ) )
48473imp 1256 1  |-  ( ( ( N  =  (/)  /\  R  e.  CRing )  /\  ( X  e.  B  /\  Y  e.  V
)  /\  ( D `  X )  e.  (Unit `  R ) )  -> 
( Z  =  ( i  e.  N  |->  ( ( D `  (
( X ( N matRepV  R ) Y ) `
 i ) ) 
./  ( D `  X ) ) )  ->  ( X  .x.  Z )  =  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   {csn 4177   <.cop 4183    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   1oc1o 7553    ^m cmap 7857   Basecbs 15857   CRingccrg 18548  Unitcui 18639  /rcdvr 18682   Mat cmat 20213   maVecMul cmvmul 20346   matRepV cmatrepV 20363   maDet cmdat 20390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mat 20214  df-mvmul 20347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator