MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12k Structured version   Visualization version   Unicode version

Theorem dfac12k 8969
Description: Equivalence of dfac12 8971 and dfac12a 8970, without using Regularity. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
dfac12k  |-  ( A. x  e.  On  ~P x  e.  dom  card  <->  A. y  e.  On  ~P ( aleph `  y )  e.  dom  card )
Distinct variable group:    x, y

Proof of Theorem dfac12k
StepHypRef Expression
1 alephon 8892 . . . 4  |-  ( aleph `  y )  e.  On
2 pweq 4161 . . . . . 6  |-  ( x  =  ( aleph `  y
)  ->  ~P x  =  ~P ( aleph `  y
) )
32eleq1d 2686 . . . . 5  |-  ( x  =  ( aleph `  y
)  ->  ( ~P x  e.  dom  card  <->  ~P ( aleph `  y )  e. 
dom  card ) )
43rspcv 3305 . . . 4  |-  ( (
aleph `  y )  e.  On  ->  ( A. x  e.  On  ~P x  e.  dom  card  ->  ~P ( aleph `  y )  e.  dom  card ) )
51, 4ax-mp 5 . . 3  |-  ( A. x  e.  On  ~P x  e.  dom  card  ->  ~P ( aleph `  y )  e.  dom  card )
65ralrimivw 2967 . 2  |-  ( A. x  e.  On  ~P x  e.  dom  card  ->  A. y  e.  On  ~P ( aleph `  y )  e.  dom  card )
7 omelon 8543 . . . . . . 7  |-  om  e.  On
8 cardon 8770 . . . . . . 7  |-  ( card `  x )  e.  On
9 ontri1 5757 . . . . . . 7  |-  ( ( om  e.  On  /\  ( card `  x )  e.  On )  ->  ( om  C_  ( card `  x
)  <->  -.  ( card `  x )  e.  om ) )
107, 8, 9mp2an 708 . . . . . 6  |-  ( om  C_  ( card `  x
)  <->  -.  ( card `  x )  e.  om )
11 cardidm 8785 . . . . . . . 8  |-  ( card `  ( card `  x
) )  =  (
card `  x )
12 cardalephex 8913 . . . . . . . 8  |-  ( om  C_  ( card `  x
)  ->  ( ( card `  ( card `  x
) )  =  (
card `  x )  <->  E. y  e.  On  ( card `  x )  =  ( aleph `  y )
) )
1311, 12mpbii 223 . . . . . . 7  |-  ( om  C_  ( card `  x
)  ->  E. y  e.  On  ( card `  x
)  =  ( aleph `  y ) )
14 r19.29 3072 . . . . . . . . 9  |-  ( ( A. y  e.  On  ~P ( aleph `  y )  e.  dom  card  /\  E. y  e.  On  ( card `  x
)  =  ( aleph `  y ) )  ->  E. y  e.  On  ( ~P ( aleph `  y
)  e.  dom  card  /\  ( card `  x
)  =  ( aleph `  y ) ) )
15 pweq 4161 . . . . . . . . . . . 12  |-  ( (
card `  x )  =  ( aleph `  y
)  ->  ~P ( card `  x )  =  ~P ( aleph `  y
) )
1615eleq1d 2686 . . . . . . . . . . 11  |-  ( (
card `  x )  =  ( aleph `  y
)  ->  ( ~P ( card `  x )  e.  dom  card  <->  ~P ( aleph `  y
)  e.  dom  card ) )
1716biimparc 504 . . . . . . . . . 10  |-  ( ( ~P ( aleph `  y
)  e.  dom  card  /\  ( card `  x
)  =  ( aleph `  y ) )  ->  ~P ( card `  x
)  e.  dom  card )
1817rexlimivw 3029 . . . . . . . . 9  |-  ( E. y  e.  On  ( ~P ( aleph `  y )  e.  dom  card  /\  ( card `  x )  =  ( aleph `  y )
)  ->  ~P ( card `  x )  e. 
dom  card )
1914, 18syl 17 . . . . . . . 8  |-  ( ( A. y  e.  On  ~P ( aleph `  y )  e.  dom  card  /\  E. y  e.  On  ( card `  x
)  =  ( aleph `  y ) )  ->  ~P ( card `  x
)  e.  dom  card )
2019ex 450 . . . . . . 7  |-  ( A. y  e.  On  ~P ( aleph `  y )  e.  dom  card  ->  ( E. y  e.  On  ( card `  x )  =  ( aleph `  y )  ->  ~P ( card `  x
)  e.  dom  card ) )
2113, 20syl5 34 . . . . . 6  |-  ( A. y  e.  On  ~P ( aleph `  y )  e.  dom  card  ->  ( om  C_  ( card `  x
)  ->  ~P ( card `  x )  e. 
dom  card ) )
2210, 21syl5bir 233 . . . . 5  |-  ( A. y  e.  On  ~P ( aleph `  y )  e.  dom  card  ->  ( -.  ( card `  x
)  e.  om  ->  ~P ( card `  x
)  e.  dom  card ) )
23 nnfi 8153 . . . . . . 7  |-  ( (
card `  x )  e.  om  ->  ( card `  x )  e.  Fin )
24 pwfi 8261 . . . . . . 7  |-  ( (
card `  x )  e.  Fin  <->  ~P ( card `  x
)  e.  Fin )
2523, 24sylib 208 . . . . . 6  |-  ( (
card `  x )  e.  om  ->  ~P ( card `  x )  e. 
Fin )
26 finnum 8774 . . . . . 6  |-  ( ~P ( card `  x
)  e.  Fin  ->  ~P ( card `  x
)  e.  dom  card )
2725, 26syl 17 . . . . 5  |-  ( (
card `  x )  e.  om  ->  ~P ( card `  x )  e. 
dom  card )
2822, 27pm2.61d2 172 . . . 4  |-  ( A. y  e.  On  ~P ( aleph `  y )  e.  dom  card  ->  ~P ( card `  x )  e. 
dom  card )
29 oncardid 8782 . . . . 5  |-  ( x  e.  On  ->  ( card `  x )  ~~  x )
30 pwen 8133 . . . . 5  |-  ( (
card `  x )  ~~  x  ->  ~P ( card `  x )  ~~  ~P x )
31 ennum 8773 . . . . 5  |-  ( ~P ( card `  x
)  ~~  ~P x  ->  ( ~P ( card `  x )  e.  dom  card  <->  ~P x  e.  dom  card ) )
3229, 30, 313syl 18 . . . 4  |-  ( x  e.  On  ->  ( ~P ( card `  x
)  e.  dom  card  <->  ~P x  e.  dom  card )
)
3328, 32syl5ibcom 235 . . 3  |-  ( A. y  e.  On  ~P ( aleph `  y )  e.  dom  card  ->  ( x  e.  On  ->  ~P x  e.  dom  card )
)
3433ralrimiv 2965 . 2  |-  ( A. y  e.  On  ~P ( aleph `  y )  e.  dom  card  ->  A. x  e.  On  ~P x  e. 
dom  card )
356, 34impbii 199 1  |-  ( A. x  e.  On  ~P x  e.  dom  card  <->  A. y  e.  On  ~P ( aleph `  y )  e.  dom  card )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   dom cdm 5114   Oncon0 5723   ` cfv 5888   omcom 7065    ~~ cen 7952   Fincfn 7955   cardccrd 8761   alephcale 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766
This theorem is referenced by:  dfac12  8971
  Copyright terms: Public domain W3C validator