MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsnprmd Structured version   Visualization version   Unicode version

Theorem dvdsnprmd 15403
Description: If a number is divisible by an integer greater than 1 and less then the number, the number is not prime. (Contributed by AV, 24-Jul-2021.)
Hypotheses
Ref Expression
dvdsnprmd.g  |-  ( ph  ->  1  <  A )
dvdsnprmd.l  |-  ( ph  ->  A  <  N )
dvdsnprmd.d  |-  ( ph  ->  A  ||  N )
Assertion
Ref Expression
dvdsnprmd  |-  ( ph  ->  -.  N  e.  Prime )

Proof of Theorem dvdsnprmd
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 dvdsnprmd.d . 2  |-  ( ph  ->  A  ||  N )
2 dvdszrcl 14988 . . . 4  |-  ( A 
||  N  ->  ( A  e.  ZZ  /\  N  e.  ZZ ) )
3 divides 14985 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  ||  N  <->  E. k  e.  ZZ  (
k  x.  A )  =  N ) )
41, 2, 33syl 18 . . 3  |-  ( ph  ->  ( A  ||  N  <->  E. k  e.  ZZ  (
k  x.  A )  =  N ) )
5 2z 11409 . . . . . . . . 9  |-  2  e.  ZZ
65a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
2  e.  ZZ )
7 simplr 792 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
k  e.  ZZ )
8 dvdsnprmd.l . . . . . . . . . . . . 13  |-  ( ph  ->  A  <  N )
98adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ZZ )  ->  A  < 
N )
109adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  ->  A  <  N )
11 breq2 4657 . . . . . . . . . . . 12  |-  ( ( k  x.  A )  =  N  ->  ( A  <  ( k  x.  A )  <->  A  <  N ) )
1211adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
( A  <  (
k  x.  A )  <-> 
A  <  N )
)
1310, 12mpbird 247 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  ->  A  <  ( k  x.  A ) )
14 dvdsnprmd.g . . . . . . . . . . . . . 14  |-  ( ph  ->  1  <  A )
15 zre 11381 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  ZZ  ->  A  e.  RR )
16153ad2ant1 1082 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ZZ  /\  1  <  A  /\  k  e.  ZZ )  ->  A  e.  RR )
17 zre 11381 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ZZ  ->  k  e.  RR )
18173ad2ant3 1084 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ZZ  /\  1  <  A  /\  k  e.  ZZ )  ->  k  e.  RR )
19 0lt1 10550 . . . . . . . . . . . . . . . . . . . . 21  |-  0  <  1
20 0red 10041 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  ZZ  ->  0  e.  RR )
21 1red 10055 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  ZZ  ->  1  e.  RR )
22 lttr 10114 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  A  e.  RR )  ->  (
( 0  <  1  /\  1  <  A )  ->  0  <  A
) )
2320, 21, 15, 22syl3anc 1326 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  ZZ  ->  (
( 0  <  1  /\  1  <  A )  ->  0  <  A
) )
2419, 23mpani 712 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  ZZ  ->  (
1  <  A  ->  0  <  A ) )
2524imp 445 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  ZZ  /\  1  <  A )  -> 
0  <  A )
26253adant3 1081 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ZZ  /\  1  <  A  /\  k  e.  ZZ )  ->  0  <  A )
2716, 18, 263jca 1242 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  1  <  A  /\  k  e.  ZZ )  ->  ( A  e.  RR  /\  k  e.  RR  /\  0  < 
A ) )
28273exp 1264 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ZZ  ->  (
1  <  A  ->  ( k  e.  ZZ  ->  ( A  e.  RR  /\  k  e.  RR  /\  0  <  A ) ) ) )
2928adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <  A  ->  ( k  e.  ZZ  ->  ( A  e.  RR  /\  k  e.  RR  /\  0  <  A ) ) ) )
301, 2, 293syl 18 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1  <  A  ->  ( k  e.  ZZ  ->  ( A  e.  RR  /\  k  e.  RR  /\  0  <  A ) ) ) )
3114, 30mpd 15 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  e.  ZZ  ->  ( A  e.  RR  /\  k  e.  RR  /\  0  <  A ) ) )
3231imp 445 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( A  e.  RR  /\  k  e.  RR  /\  0  < 
A ) )
3332adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
( A  e.  RR  /\  k  e.  RR  /\  0  <  A ) )
34 ltmulgt12 10884 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  k  e.  RR  /\  0  <  A )  ->  (
1  <  k  <->  A  <  ( k  x.  A ) ) )
3533, 34syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
( 1  <  k  <->  A  <  ( k  x.  A ) ) )
3613, 35mpbird 247 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
1  <  k )
37 df-2 11079 . . . . . . . . . . 11  |-  2  =  ( 1  +  1 )
3837breq1i 4660 . . . . . . . . . 10  |-  ( 2  <_  k  <->  ( 1  +  1 )  <_ 
k )
39 1zzd 11408 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  1  e.  ZZ )
40 zltp1le 11427 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  ZZ  /\  k  e.  ZZ )  ->  ( 1  <  k  <->  ( 1  +  1 )  <_  k ) )
4139, 40mpancom 703 . . . . . . . . . . . . 13  |-  ( k  e.  ZZ  ->  (
1  <  k  <->  ( 1  +  1 )  <_ 
k ) )
4241bicomd 213 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  (
( 1  +  1 )  <_  k  <->  1  <  k ) )
4342adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( 1  +  1 )  <_  k  <->  1  <  k ) )
4443adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
( ( 1  +  1 )  <_  k  <->  1  <  k ) )
4538, 44syl5bb 272 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
( 2  <_  k  <->  1  <  k ) )
4636, 45mpbird 247 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
2  <_  k )
47 eluz2 11693 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  k  e.  ZZ  /\  2  <_ 
k ) )
486, 7, 46, 47syl3anbrc 1246 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
k  e.  ( ZZ>= ` 
2 ) )
495a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  1  <  A )  -> 
2  e.  ZZ )
50 simpl 473 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  1  <  A )  ->  A  e.  ZZ )
51 1zzd 11408 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ZZ  ->  1  e.  ZZ )
52 zltp1le 11427 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  ZZ  /\  A  e.  ZZ )  ->  ( 1  <  A  <->  ( 1  +  1 )  <_  A ) )
5351, 52mpancom 703 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ZZ  ->  (
1  <  A  <->  ( 1  +  1 )  <_  A ) )
5453biimpa 501 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  1  <  A )  -> 
( 1  +  1 )  <_  A )
5537breq1i 4660 . . . . . . . . . . . . . . . 16  |-  ( 2  <_  A  <->  ( 1  +  1 )  <_  A )
5654, 55sylibr 224 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  1  <  A )  -> 
2  <_  A )
5749, 50, 563jca 1242 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  1  <  A )  -> 
( 2  e.  ZZ  /\  A  e.  ZZ  /\  2  <_  A ) )
5857ex 450 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  (
1  <  A  ->  ( 2  e.  ZZ  /\  A  e.  ZZ  /\  2  <_  A ) ) )
5958adantr 481 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <  A  ->  ( 2  e.  ZZ  /\  A  e.  ZZ  /\  2  <_  A ) ) )
601, 2, 593syl 18 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  <  A  ->  ( 2  e.  ZZ  /\  A  e.  ZZ  /\  2  <_  A ) ) )
6114, 60mpd 15 . . . . . . . . . 10  |-  ( ph  ->  ( 2  e.  ZZ  /\  A  e.  ZZ  /\  2  <_  A ) )
62 eluz2 11693 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  A  e.  ZZ  /\  2  <_  A ) )
6361, 62sylibr 224 . . . . . . . . 9  |-  ( ph  ->  A  e.  ( ZZ>= ` 
2 ) )
6463adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  A  e.  ( ZZ>= `  2 )
)
6564adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  ->  A  e.  ( ZZ>= ` 
2 ) )
66 nprm 15401 . . . . . . 7  |-  ( ( k  e.  ( ZZ>= ` 
2 )  /\  A  e.  ( ZZ>= `  2 )
)  ->  -.  (
k  x.  A )  e.  Prime )
6748, 65, 66syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  ->  -.  ( k  x.  A
)  e.  Prime )
68 eleq1 2689 . . . . . . . 8  |-  ( ( k  x.  A )  =  N  ->  (
( k  x.  A
)  e.  Prime  <->  N  e.  Prime ) )
6968notbid 308 . . . . . . 7  |-  ( ( k  x.  A )  =  N  ->  ( -.  ( k  x.  A
)  e.  Prime  <->  -.  N  e.  Prime ) )
7069adantl 482 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
( -.  ( k  x.  A )  e. 
Prime 
<->  -.  N  e.  Prime ) )
7167, 70mpbid 222 . . . . 5  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  ->  -.  N  e.  Prime )
7271ex 450 . . . 4  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( k  x.  A )  =  N  ->  -.  N  e.  Prime ) )
7372rexlimdva 3031 . . 3  |-  ( ph  ->  ( E. k  e.  ZZ  ( k  x.  A )  =  N  ->  -.  N  e.  Prime ) )
744, 73sylbid 230 . 2  |-  ( ph  ->  ( A  ||  N  ->  -.  N  e.  Prime ) )
751, 74mpd 15 1  |-  ( ph  ->  -.  N  e.  Prime )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075   2c2 11070   ZZcz 11377   ZZ>=cuz 11687    || cdvds 14983   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386
This theorem is referenced by:  2pwp1prm  41503
  Copyright terms: Public domain W3C validator