Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expdioph Structured version   Visualization version   Unicode version

Theorem expdioph 37590
Description: The exponential function is Diophantine. This result completes and encapsulates our development using Pell equation solution sequences and is sometimes regarded as Matiyasevich's theorem properly. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
expdioph  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) }  e.  (Dioph `  3 )

Proof of Theorem expdioph
StepHypRef Expression
1 pm4.42 1004 . . . 4  |-  ( ( a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) )  <->  ( (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  /\  ( a `  2
)  e.  NN )  \/  ( ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
)  /\  -.  (
a `  2 )  e.  NN ) ) )
2 ancom 466 . . . . . 6  |-  ( ( ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  /\  ( a `  2
)  e.  NN )  <-> 
( ( a ` 
2 )  e.  NN  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) )
3 elmapi 7879 . . . . . . . . . . . . 13  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  a : ( 1 ... 3 ) --> NN0 )
4 df-2 11079 . . . . . . . . . . . . . . 15  |-  2  =  ( 1  +  1 )
5 df-3 11080 . . . . . . . . . . . . . . . 16  |-  3  =  ( 2  +  1 )
6 ssid 3624 . . . . . . . . . . . . . . . 16  |-  ( 1 ... 3 )  C_  ( 1 ... 3
)
75, 6jm2.27dlem5 37580 . . . . . . . . . . . . . . 15  |-  ( 1 ... 2 )  C_  ( 1 ... 3
)
84, 7jm2.27dlem5 37580 . . . . . . . . . . . . . 14  |-  ( 1 ... 1 )  C_  ( 1 ... 3
)
9 1nn 11031 . . . . . . . . . . . . . . 15  |-  1  e.  NN
109jm2.27dlem3 37578 . . . . . . . . . . . . . 14  |-  1  e.  ( 1 ... 1
)
118, 10sselii 3600 . . . . . . . . . . . . 13  |-  1  e.  ( 1 ... 3
)
12 ffvelrn 6357 . . . . . . . . . . . . 13  |-  ( ( a : ( 1 ... 3 ) --> NN0 
/\  1  e.  ( 1 ... 3 ) )  ->  ( a `  1 )  e. 
NN0 )
133, 11, 12sylancl 694 . . . . . . . . . . . 12  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
a `  1 )  e.  NN0 )
1413adantr 481 . . . . . . . . . . 11  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( a ` 
1 )  e.  NN0 )
15 elnn0 11294 . . . . . . . . . . 11  |-  ( ( a `  1 )  e.  NN0  <->  ( ( a `
 1 )  e.  NN  \/  ( a `
 1 )  =  0 ) )
1614, 15sylib 208 . . . . . . . . . 10  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 1 )  e.  NN  \/  ( a `
 1 )  =  0 ) )
17 elnn1uz2 11765 . . . . . . . . . . . 12  |-  ( ( a `  1 )  e.  NN  <->  ( (
a `  1 )  =  1  \/  (
a `  1 )  e.  ( ZZ>= `  2 )
) )
1817biimpi 206 . . . . . . . . . . 11  |-  ( ( a `  1 )  e.  NN  ->  (
( a `  1
)  =  1  \/  ( a `  1
)  e.  ( ZZ>= ` 
2 ) ) )
1918orim1i 539 . . . . . . . . . 10  |-  ( ( ( a `  1
)  e.  NN  \/  ( a `  1
)  =  0 )  ->  ( ( ( a `  1 )  =  1  \/  (
a `  1 )  e.  ( ZZ>= `  2 )
)  \/  ( a `
 1 )  =  0 ) )
2016, 19syl 17 . . . . . . . . 9  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( a `  1 )  =  1  \/  (
a `  1 )  e.  ( ZZ>= `  2 )
)  \/  ( a `
 1 )  =  0 ) )
2120biantrurd 529 . . . . . . . 8  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
)  <->  ( ( ( ( a `  1
)  =  1  \/  ( a `  1
)  e.  ( ZZ>= ` 
2 ) )  \/  ( a `  1
)  =  0 )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) )
22 andir 912 . . . . . . . . . 10  |-  ( ( ( ( ( a `
 1 )  =  1  \/  ( a `
 1 )  e.  ( ZZ>= `  2 )
)  \/  ( a `
 1 )  =  0 )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  <->  ( (
( ( a ` 
1 )  =  1  \/  ( a ` 
1 )  e.  (
ZZ>= `  2 ) )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  \/  ( ( a `  1 )  =  0  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) )
23 andir 912 . . . . . . . . . . 11  |-  ( ( ( ( a ` 
1 )  =  1  \/  ( a ` 
1 )  e.  (
ZZ>= `  2 ) )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  <->  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  \/  ( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) ) )
2423orbi1i 542 . . . . . . . . . 10  |-  ( ( ( ( ( a `
 1 )  =  1  \/  ( a `
 1 )  e.  ( ZZ>= `  2 )
)  /\  ( a `  3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) )  <->  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) )  \/  ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) )  \/  ( ( a `  1 )  =  0  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) )
2522, 24bitri 264 . . . . . . . . 9  |-  ( ( ( ( ( a `
 1 )  =  1  \/  ( a `
 1 )  e.  ( ZZ>= `  2 )
)  \/  ( a `
 1 )  =  0 )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  <->  ( (
( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  \/  ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) ) )  \/  ( ( a ` 
1 )  =  0  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) )
26 nnz 11399 . . . . . . . . . . . . . . . 16  |-  ( ( a `  2 )  e.  NN  ->  (
a `  2 )  e.  ZZ )
27 1exp 12889 . . . . . . . . . . . . . . . 16  |-  ( ( a `  2 )  e.  ZZ  ->  (
1 ^ ( a `
 2 ) )  =  1 )
2826, 27syl 17 . . . . . . . . . . . . . . 15  |-  ( ( a `  2 )  e.  NN  ->  (
1 ^ ( a `
 2 ) )  =  1 )
2928adantl 482 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( 1 ^ ( a `  2
) )  =  1 )
3029eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 3 )  =  ( 1 ^ (
a `  2 )
)  <->  ( a ` 
3 )  =  1 ) )
31 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( ( a `  1 )  =  1  ->  (
( a `  1
) ^ ( a `
 2 ) )  =  ( 1 ^ ( a `  2
) ) )
3231eqeq2d 2632 . . . . . . . . . . . . . 14  |-  ( ( a `  1 )  =  1  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  <->  ( a `  3 )  =  ( 1 ^ (
a `  2 )
) ) )
3332bibi1d 333 . . . . . . . . . . . . 13  |-  ( ( a `  1 )  =  1  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  1 )  <-> 
( ( a ` 
3 )  =  ( 1 ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  1 ) ) )
3430, 33syl5ibrcom 237 . . . . . . . . . . . 12  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 1 )  =  1  ->  ( (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) )  <->  ( a `  3 )  =  1 ) ) )
3534pm5.32d 671 . . . . . . . . . . 11  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  <->  ( (
a `  1 )  =  1  /\  (
a `  3 )  =  1 ) ) )
36 iba 524 . . . . . . . . . . . . 13  |-  ( ( a `  2 )  e.  NN  ->  (
( a `  1
)  e.  ( ZZ>= ` 
2 )  <->  ( (
a `  1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN ) ) )
3736adantl 482 . . . . . . . . . . . 12  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 1 )  e.  ( ZZ>= `  2 )  <->  ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN ) ) )
3837anbi1d 741 . . . . . . . . . . 11  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  <->  ( (
( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) )
3935, 38orbi12d 746 . . . . . . . . . 10  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) )  \/  ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) )  <->  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) ) )
40 0exp 12895 . . . . . . . . . . . . . 14  |-  ( ( a `  2 )  e.  NN  ->  (
0 ^ ( a `
 2 ) )  =  0 )
4140adantl 482 . . . . . . . . . . . . 13  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( 0 ^ ( a `  2
) )  =  0 )
4241eqeq2d 2632 . . . . . . . . . . . 12  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 3 )  =  ( 0 ^ (
a `  2 )
)  <->  ( a ` 
3 )  =  0 ) )
43 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( ( a `  1 )  =  0  ->  (
( a `  1
) ^ ( a `
 2 ) )  =  ( 0 ^ ( a `  2
) ) )
4443eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( ( a `  1 )  =  0  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  <->  ( a `  3 )  =  ( 0 ^ (
a `  2 )
) ) )
4544bibi1d 333 . . . . . . . . . . . 12  |-  ( ( a `  1 )  =  0  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  0 )  <-> 
( ( a ` 
3 )  =  ( 0 ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  0 ) ) )
4642, 45syl5ibrcom 237 . . . . . . . . . . 11  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 1 )  =  0  ->  ( (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) )  <->  ( a `  3 )  =  0 ) ) )
4746pm5.32d 671 . . . . . . . . . 10  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( a `  1 )  =  0  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  <->  ( (
a `  1 )  =  0  /\  (
a `  3 )  =  0 ) ) )
4839, 47orbi12d 746 . . . . . . . . 9  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( ( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  \/  ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) ) )  \/  ( ( a ` 
1 )  =  0  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  <->  ( (
( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  1 )  \/  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) ) )
4925, 48syl5bb 272 . . . . . . . 8  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( ( ( a ` 
1 )  =  1  \/  ( a ` 
1 )  e.  (
ZZ>= `  2 ) )  \/  ( a ` 
1 )  =  0 )  /\  ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  <->  ( (
( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  1 )  \/  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) ) )
5021, 49bitrd 268 . . . . . . 7  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
)  <->  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 )  \/  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) ) )
5150pm5.32da 673 . . . . . 6  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
2 )  e.  NN  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) )  <-> 
( ( a ` 
2 )  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) ) ) )
522, 51syl5bb 272 . . . . 5  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  /\  ( a ` 
2 )  e.  NN ) 
<->  ( ( a ` 
2 )  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) ) ) )
53 ancom 466 . . . . . 6  |-  ( ( ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  /\  -.  ( a `  2
)  e.  NN )  <-> 
( -.  ( a `
 2 )  e.  NN  /\  ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) ) )
54 2nn 11185 . . . . . . . . . . . 12  |-  2  e.  NN
5554jm2.27dlem3 37578 . . . . . . . . . . 11  |-  2  e.  ( 1 ... 2
)
567, 55sselii 3600 . . . . . . . . . 10  |-  2  e.  ( 1 ... 3
)
57 ffvelrn 6357 . . . . . . . . . 10  |-  ( ( a : ( 1 ... 3 ) --> NN0 
/\  2  e.  ( 1 ... 3 ) )  ->  ( a `  2 )  e. 
NN0 )
583, 56, 57sylancl 694 . . . . . . . . 9  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
a `  2 )  e.  NN0 )
59 elnn0 11294 . . . . . . . . . . 11  |-  ( ( a `  2 )  e.  NN0  <->  ( ( a `
 2 )  e.  NN  \/  ( a `
 2 )  =  0 ) )
60 pm2.53 388 . . . . . . . . . . 11  |-  ( ( ( a `  2
)  e.  NN  \/  ( a `  2
)  =  0 )  ->  ( -.  (
a `  2 )  e.  NN  ->  ( a `  2 )  =  0 ) )
6159, 60sylbi 207 . . . . . . . . . 10  |-  ( ( a `  2 )  e.  NN0  ->  ( -.  ( a `  2
)  e.  NN  ->  ( a `  2 )  =  0 ) )
62 0nnn 11052 . . . . . . . . . . 11  |-  -.  0  e.  NN
63 eleq1 2689 . . . . . . . . . . 11  |-  ( ( a `  2 )  =  0  ->  (
( a `  2
)  e.  NN  <->  0  e.  NN ) )
6462, 63mtbiri 317 . . . . . . . . . 10  |-  ( ( a `  2 )  =  0  ->  -.  ( a `  2
)  e.  NN )
6561, 64impbid1 215 . . . . . . . . 9  |-  ( ( a `  2 )  e.  NN0  ->  ( -.  ( a `  2
)  e.  NN  <->  ( a `  2 )  =  0 ) )
6658, 65syl 17 . . . . . . . 8  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  ( -.  ( a `  2
)  e.  NN  <->  ( a `  2 )  =  0 ) )
6766anbi1d 741 . . . . . . 7  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( -.  ( a `
 2 )  e.  NN  /\  ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  <->  ( (
a `  2 )  =  0  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) )
6813nn0cnd 11353 . . . . . . . . . . 11  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
a `  1 )  e.  CC )
6968exp0d 13002 . . . . . . . . . 10  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( a `  1
) ^ 0 )  =  1 )
7069eqeq2d 2632 . . . . . . . . 9  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ 0 )  <->  ( a `  3 )  =  1 ) )
71 oveq2 6658 . . . . . . . . . . 11  |-  ( ( a `  2 )  =  0  ->  (
( a `  1
) ^ ( a `
 2 ) )  =  ( ( a `
 1 ) ^
0 ) )
7271eqeq2d 2632 . . . . . . . . . 10  |-  ( ( a `  2 )  =  0  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  <->  ( a `  3 )  =  ( ( a ` 
1 ) ^ 0 ) ) )
7372bibi1d 333 . . . . . . . . 9  |-  ( ( a `  2 )  =  0  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  1 )  <-> 
( ( a ` 
3 )  =  ( ( a `  1
) ^ 0 )  <-> 
( a `  3
)  =  1 ) ) )
7470, 73syl5ibrcom 237 . . . . . . . 8  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( a `  2
)  =  0  -> 
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  1 ) ) )
7574pm5.32d 671 . . . . . . 7  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
2 )  =  0  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  <->  ( ( a `
 2 )  =  0  /\  ( a `
 3 )  =  1 ) ) )
7667, 75bitrd 268 . . . . . 6  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( -.  ( a `
 2 )  e.  NN  /\  ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  <->  ( (
a `  2 )  =  0  /\  (
a `  3 )  =  1 ) ) )
7753, 76syl5bb 272 . . . . 5  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  /\  -.  ( a `
 2 )  e.  NN )  <->  ( (
a `  2 )  =  0  /\  (
a `  3 )  =  1 ) ) )
7852, 77orbi12d 746 . . . 4  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
)  /\  ( a `  2 )  e.  NN )  \/  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  /\  -.  ( a `  2
)  e.  NN ) )  <->  ( ( ( a `  2 )  e.  NN  /\  (
( ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 )  \/  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) ) )
791, 78syl5bb 272 . . 3  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  <->  ( (
( a `  2
)  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) ) )
8079rabbiia 3185 . 2  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) }  =  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( ( ( a `  2 )  e.  NN  /\  (
( ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 )  \/  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) }
81 3nn0 11310 . . . . 5  |-  3  e.  NN0
82 ovex 6678 . . . . . 6  |-  ( 1 ... 3 )  e. 
_V
83 mzpproj 37300 . . . . . 6  |-  ( ( ( 1 ... 3
)  e.  _V  /\  2  e.  ( 1 ... 3 ) )  ->  ( a  e.  ( ZZ  ^m  (
1 ... 3 ) ) 
|->  ( a `  2
) )  e.  (mzPoly `  ( 1 ... 3
) ) )
8482, 56, 83mp2an 708 . . . . 5  |-  ( a  e.  ( ZZ  ^m  ( 1 ... 3
) )  |->  ( a `
 2 ) )  e.  (mzPoly `  (
1 ... 3 ) )
85 elnnrabdioph 37371 . . . . 5  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  2
) )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
2 )  e.  NN }  e.  (Dioph `  3
) )
8681, 84, 85mp2an 708 . . . 4  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  2 )  e.  NN }  e.  (Dioph `  3 )
87 mzpproj 37300 . . . . . . . . 9  |-  ( ( ( 1 ... 3
)  e.  _V  /\  1  e.  ( 1 ... 3 ) )  ->  ( a  e.  ( ZZ  ^m  (
1 ... 3 ) ) 
|->  ( a `  1
) )  e.  (mzPoly `  ( 1 ... 3
) ) )
8882, 11, 87mp2an 708 . . . . . . . 8  |-  ( a  e.  ( ZZ  ^m  ( 1 ... 3
) )  |->  ( a `
 1 ) )  e.  (mzPoly `  (
1 ... 3 ) )
89 1z 11407 . . . . . . . . 9  |-  1  e.  ZZ
90 mzpconstmpt 37303 . . . . . . . . 9  |-  ( ( ( 1 ... 3
)  e.  _V  /\  1  e.  ZZ )  ->  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  1 )  e.  (mzPoly `  ( 1 ... 3
) ) )
9182, 89, 90mp2an 708 . . . . . . . 8  |-  ( a  e.  ( ZZ  ^m  ( 1 ... 3
) )  |->  1 )  e.  (mzPoly `  (
1 ... 3 ) )
92 eqrabdioph 37341 . . . . . . . 8  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  1
) )  e.  (mzPoly `  ( 1 ... 3
) )  /\  (
a  e.  ( ZZ 
^m  ( 1 ... 3 ) )  |->  1 )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
1 )  =  1 }  e.  (Dioph ` 
3 ) )
9381, 88, 91, 92mp3an 1424 . . . . . . 7  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  1 )  =  1 }  e.  (Dioph `  3 )
94 3nn 11186 . . . . . . . . . 10  |-  3  e.  NN
9594jm2.27dlem3 37578 . . . . . . . . 9  |-  3  e.  ( 1 ... 3
)
96 mzpproj 37300 . . . . . . . . 9  |-  ( ( ( 1 ... 3
)  e.  _V  /\  3  e.  ( 1 ... 3 ) )  ->  ( a  e.  ( ZZ  ^m  (
1 ... 3 ) ) 
|->  ( a `  3
) )  e.  (mzPoly `  ( 1 ... 3
) ) )
9782, 95, 96mp2an 708 . . . . . . . 8  |-  ( a  e.  ( ZZ  ^m  ( 1 ... 3
) )  |->  ( a `
 3 ) )  e.  (mzPoly `  (
1 ... 3 ) )
98 eqrabdioph 37341 . . . . . . . 8  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  3
) )  e.  (mzPoly `  ( 1 ... 3
) )  /\  (
a  e.  ( ZZ 
^m  ( 1 ... 3 ) )  |->  1 )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
3 )  =  1 }  e.  (Dioph ` 
3 ) )
9981, 97, 91, 98mp3an 1424 . . . . . . 7  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  1 }  e.  (Dioph `  3 )
100 anrabdioph 37344 . . . . . . 7  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
1 )  =  1 }  e.  (Dioph ` 
3 )  /\  {
a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( a `  3
)  =  1 }  e.  (Dioph `  3
) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 ) }  e.  (Dioph ` 
3 ) )
10193, 99, 100mp2an 708 . . . . . 6  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 ) }  e.  (Dioph ` 
3 )
102 expdiophlem2 37589 . . . . . 6  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) }  e.  (Dioph `  3 )
103 orrabdioph 37345 . . . . . 6  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 ) }  e.  (Dioph `  3 )  /\  { a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) }  e.  (Dioph `  3 ) )  ->  { a  e.  ( NN0  ^m  (
1 ... 3 ) )  |  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) }  e.  (Dioph `  3 ) )
104101, 102, 103mp2an 708 . . . . 5  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  1 )  \/  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) }  e.  (Dioph ` 
3 )
105 eq0rabdioph 37340 . . . . . . 7  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  1
) )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
1 )  =  0 }  e.  (Dioph ` 
3 ) )
10681, 88, 105mp2an 708 . . . . . 6  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  1 )  =  0 }  e.  (Dioph `  3 )
107 eq0rabdioph 37340 . . . . . . 7  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  3
) )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
3 )  =  0 }  e.  (Dioph ` 
3 ) )
10881, 97, 107mp2an 708 . . . . . 6  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  0 }  e.  (Dioph `  3 )
109 anrabdioph 37344 . . . . . 6  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
1 )  =  0 }  e.  (Dioph ` 
3 )  /\  {
a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( a `  3
)  =  0 }  e.  (Dioph `  3
) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) }  e.  (Dioph ` 
3 ) )
110106, 108, 109mp2an 708 . . . . 5  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) }  e.  (Dioph ` 
3 )
111 orrabdioph 37345 . . . . 5  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) }  e.  (Dioph `  3 )  /\  { a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( ( a ` 
1 )  =  0  /\  ( a ` 
3 )  =  0 ) }  e.  (Dioph `  3 ) )  ->  { a  e.  ( NN0  ^m  (
1 ... 3 ) )  |  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 )  \/  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) }  e.  (Dioph `  3
) )
112104, 110, 111mp2an 708 . . . 4  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 )  \/  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) }  e.  (Dioph `  3 )
113 anrabdioph 37344 . . . 4  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
2 )  e.  NN }  e.  (Dioph `  3
)  /\  { a  e.  ( NN0  ^m  (
1 ... 3 ) )  |  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 )  \/  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) }  e.  (Dioph `  3
) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  2
)  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) ) }  e.  (Dioph `  3 ) )
11486, 112, 113mp2an 708 . . 3  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  2
)  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) ) }  e.  (Dioph `  3 )
115 eq0rabdioph 37340 . . . . 5  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  2
) )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
2 )  =  0 }  e.  (Dioph ` 
3 ) )
11681, 84, 115mp2an 708 . . . 4  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  2 )  =  0 }  e.  (Dioph `  3 )
117 anrabdioph 37344 . . . 4  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
2 )  =  0 }  e.  (Dioph ` 
3 )  /\  {
a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( a `  3
)  =  1 }  e.  (Dioph `  3
) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) }  e.  (Dioph ` 
3 ) )
118116, 99, 117mp2an 708 . . 3  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) }  e.  (Dioph ` 
3 )
119 orrabdioph 37345 . . 3  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( ( a `
 2 )  e.  NN  /\  ( ( ( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  1 )  \/  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) ) }  e.  (Dioph ` 
3 )  /\  {
a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( ( a ` 
2 )  =  0  /\  ( a ` 
3 )  =  1 ) }  e.  (Dioph `  3 ) )  ->  { a  e.  ( NN0  ^m  (
1 ... 3 ) )  |  ( ( ( a `  2 )  e.  NN  /\  (
( ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 )  \/  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) }  e.  (Dioph `  3 ) )
120114, 118, 119mp2an 708 . 2  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( ( a ` 
2 )  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) }  e.  (Dioph `  3 )
12180, 120eqeltri 2697 1  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) }  e.  (Dioph `  3 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   0cc0 9936   1c1 9937   NNcn 11020   2c2 11070   3c3 11071   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   ^cexp 12860  mzPolycmzp 37285  Diophcdioph 37318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-numer 15443  df-denom 15444  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-mzpcl 37286  df-mzp 37287  df-dioph 37319  df-squarenn 37405  df-pell1qr 37406  df-pell14qr 37407  df-pell1234qr 37408  df-pellfund 37409  df-rmx 37466  df-rmy 37467
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator