Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemv Structured version   Visualization version   Unicode version

Theorem eulerpartlemv 30426
Description: Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 19-Aug-2018.)
Hypothesis
Ref Expression
eulerpart.p  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
Assertion
Ref Expression
eulerpartlemv  |-  ( A  e.  P  <->  ( A : NN --> NN0  /\  ( `' A " NN )  e.  Fin  /\  sum_ k  e.  ( `' A " NN ) ( ( A `  k
)  x.  k )  =  N ) )
Distinct variable groups:    f, k, A    f, N, k    P, k
Allowed substitution hint:    P( f)

Proof of Theorem eulerpartlemv
StepHypRef Expression
1 eulerpart.p . . 3  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
21eulerpartleme 30425 . 2  |-  ( A  e.  P  <->  ( A : NN --> NN0  /\  ( `' A " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( A `  k
)  x.  k )  =  N ) )
3 cnvimass 5485 . . . . . . . . 9  |-  ( `' A " NN ) 
C_  dom  A
4 fdm 6051 . . . . . . . . 9  |-  ( A : NN --> NN0  ->  dom 
A  =  NN )
53, 4syl5sseq 3653 . . . . . . . 8  |-  ( A : NN --> NN0  ->  ( `' A " NN ) 
C_  NN )
6 simpl 473 . . . . . . . . . . 11  |-  ( ( A : NN --> NN0  /\  k  e.  ( `' A " NN ) )  ->  A : NN --> NN0 )
75sselda 3603 . . . . . . . . . . 11  |-  ( ( A : NN --> NN0  /\  k  e.  ( `' A " NN ) )  ->  k  e.  NN )
86, 7ffvelrnd 6360 . . . . . . . . . 10  |-  ( ( A : NN --> NN0  /\  k  e.  ( `' A " NN ) )  ->  ( A `  k )  e.  NN0 )
97nnnn0d 11351 . . . . . . . . . 10  |-  ( ( A : NN --> NN0  /\  k  e.  ( `' A " NN ) )  ->  k  e.  NN0 )
108, 9nn0mulcld 11356 . . . . . . . . 9  |-  ( ( A : NN --> NN0  /\  k  e.  ( `' A " NN ) )  ->  ( ( A `
 k )  x.  k )  e.  NN0 )
1110nn0cnd 11353 . . . . . . . 8  |-  ( ( A : NN --> NN0  /\  k  e.  ( `' A " NN ) )  ->  ( ( A `
 k )  x.  k )  e.  CC )
12 simpr 477 . . . . . . . . . . . . 13  |-  ( ( A : NN --> NN0  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
k  e.  ( NN 
\  ( `' A " NN ) ) )
1312eldifad 3586 . . . . . . . . . . . 12  |-  ( ( A : NN --> NN0  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
k  e.  NN )
1412eldifbd 3587 . . . . . . . . . . . . . 14  |-  ( ( A : NN --> NN0  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  ->  -.  k  e.  ( `' A " NN ) )
15 simpl 473 . . . . . . . . . . . . . . 15  |-  ( ( A : NN --> NN0  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  ->  A : NN --> NN0 )
16 ffn 6045 . . . . . . . . . . . . . . 15  |-  ( A : NN --> NN0  ->  A  Fn  NN )
17 elpreima 6337 . . . . . . . . . . . . . . 15  |-  ( A  Fn  NN  ->  (
k  e.  ( `' A " NN )  <-> 
( k  e.  NN  /\  ( A `  k
)  e.  NN ) ) )
1815, 16, 173syl 18 . . . . . . . . . . . . . 14  |-  ( ( A : NN --> NN0  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
( k  e.  ( `' A " NN )  <-> 
( k  e.  NN  /\  ( A `  k
)  e.  NN ) ) )
1914, 18mtbid 314 . . . . . . . . . . . . 13  |-  ( ( A : NN --> NN0  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  ->  -.  ( k  e.  NN  /\  ( A `  k
)  e.  NN ) )
20 imnan 438 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN  ->  -.  ( A `  k
)  e.  NN )  <->  -.  ( k  e.  NN  /\  ( A `  k
)  e.  NN ) )
2119, 20sylibr 224 . . . . . . . . . . . 12  |-  ( ( A : NN --> NN0  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
( k  e.  NN  ->  -.  ( A `  k )  e.  NN ) )
2213, 21mpd 15 . . . . . . . . . . 11  |-  ( ( A : NN --> NN0  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  ->  -.  ( A `  k
)  e.  NN )
2315, 13ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( ( A : NN --> NN0  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
( A `  k
)  e.  NN0 )
24 elnn0 11294 . . . . . . . . . . . 12  |-  ( ( A `  k )  e.  NN0  <->  ( ( A `
 k )  e.  NN  \/  ( A `
 k )  =  0 ) )
2523, 24sylib 208 . . . . . . . . . . 11  |-  ( ( A : NN --> NN0  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
( ( A `  k )  e.  NN  \/  ( A `  k
)  =  0 ) )
26 orel1 397 . . . . . . . . . . 11  |-  ( -.  ( A `  k
)  e.  NN  ->  ( ( ( A `  k )  e.  NN  \/  ( A `  k
)  =  0 )  ->  ( A `  k )  =  0 ) )
2722, 25, 26sylc 65 . . . . . . . . . 10  |-  ( ( A : NN --> NN0  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
( A `  k
)  =  0 )
2827oveq1d 6665 . . . . . . . . 9  |-  ( ( A : NN --> NN0  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
( ( A `  k )  x.  k
)  =  ( 0  x.  k ) )
2913nncnd 11036 . . . . . . . . . 10  |-  ( ( A : NN --> NN0  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
k  e.  CC )
3029mul02d 10234 . . . . . . . . 9  |-  ( ( A : NN --> NN0  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
( 0  x.  k
)  =  0 )
3128, 30eqtrd 2656 . . . . . . . 8  |-  ( ( A : NN --> NN0  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
( ( A `  k )  x.  k
)  =  0 )
32 nnuz 11723 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
3332eqimssi 3659 . . . . . . . . 9  |-  NN  C_  ( ZZ>= `  1 )
3433a1i 11 . . . . . . . 8  |-  ( A : NN --> NN0  ->  NN  C_  ( ZZ>= `  1 )
)
355, 11, 31, 34sumss 14455 . . . . . . 7  |-  ( A : NN --> NN0  ->  sum_ k  e.  ( `' A " NN ) ( ( A `  k )  x.  k
)  =  sum_ k  e.  NN  ( ( A `
 k )  x.  k ) )
3635eqcomd 2628 . . . . . 6  |-  ( A : NN --> NN0  ->  sum_ k  e.  NN  (
( A `  k
)  x.  k )  =  sum_ k  e.  ( `' A " NN ) ( ( A `  k )  x.  k
) )
3736adantr 481 . . . . 5  |-  ( ( A : NN --> NN0  /\  ( `' A " NN )  e.  Fin )  ->  sum_ k  e.  NN  (
( A `  k
)  x.  k )  =  sum_ k  e.  ( `' A " NN ) ( ( A `  k )  x.  k
) )
3837eqeq1d 2624 . . . 4  |-  ( ( A : NN --> NN0  /\  ( `' A " NN )  e.  Fin )  -> 
( sum_ k  e.  NN  ( ( A `  k )  x.  k
)  =  N  <->  sum_ k  e.  ( `' A " NN ) ( ( A `
 k )  x.  k )  =  N ) )
3938pm5.32i 669 . . 3  |-  ( ( ( A : NN --> NN0  /\  ( `' A " NN )  e.  Fin )  /\  sum_ k  e.  NN  ( ( A `  k )  x.  k
)  =  N )  <-> 
( ( A : NN
--> NN0  /\  ( `' A " NN )  e.  Fin )  /\  sum_ k  e.  ( `' A " NN ) ( ( A `  k )  x.  k
)  =  N ) )
40 df-3an 1039 . . 3  |-  ( ( A : NN --> NN0  /\  ( `' A " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( A `  k
)  x.  k )  =  N )  <->  ( ( A : NN --> NN0  /\  ( `' A " NN )  e.  Fin )  /\  sum_ k  e.  NN  (
( A `  k
)  x.  k )  =  N ) )
41 df-3an 1039 . . 3  |-  ( ( A : NN --> NN0  /\  ( `' A " NN )  e.  Fin  /\  sum_ k  e.  ( `' A " NN ) ( ( A `  k
)  x.  k )  =  N )  <->  ( ( A : NN --> NN0  /\  ( `' A " NN )  e.  Fin )  /\  sum_ k  e.  ( `' A " NN ) ( ( A `  k )  x.  k
)  =  N ) )
4239, 40, 413bitr4i 292 . 2  |-  ( ( A : NN --> NN0  /\  ( `' A " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( A `  k
)  x.  k )  =  N )  <->  ( A : NN --> NN0  /\  ( `' A " NN )  e.  Fin  /\  sum_ k  e.  ( `' A " NN ) ( ( A `  k
)  x.  k )  =  N ) )
432, 42bitri 264 1  |-  ( A  e.  P  <->  ( A : NN --> NN0  /\  ( `' A " NN )  e.  Fin  /\  sum_ k  e.  ( `' A " NN ) ( ( A `  k
)  x.  k )  =  N ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916    \ cdif 3571    C_ wss 3574   `'ccnv 5113   dom cdm 5114   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   0cc0 9936   1c1 9937    x. cmul 9941   NNcn 11020   NN0cn0 11292   ZZ>=cuz 11687   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator