MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxprds Structured version   Visualization version   Unicode version

Theorem rrxprds 23177
Description: Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
rrxval.r  |-  H  =  (ℝ^ `  I )
rrxbase.b  |-  B  =  ( Base `  H
)
Assertion
Ref Expression
rrxprds  |-  ( I  e.  V  ->  H  =  (toCHil `  ( (RRfld X_s ( I  X.  { ( (subringAlg  ` RRfld ) `  RR ) } ) )s  B ) ) )

Proof of Theorem rrxprds
StepHypRef Expression
1 rrxval.r . . 3  |-  H  =  (ℝ^ `  I )
21rrxval 23175 . 2  |-  ( I  e.  V  ->  H  =  (toCHil `  (RRfld freeLMod  I ) ) )
3 refld 19965 . . . . 5  |- RRfld  e. Field
4 eqid 2622 . . . . . 6  |-  (RRfld freeLMod  I )  =  (RRfld freeLMod  I )
5 eqid 2622 . . . . . 6  |-  ( Base `  (RRfld freeLMod  I ) )  =  ( Base `  (RRfld freeLMod  I ) )
64, 5frlmpws 20094 . . . . 5  |-  ( (RRfld 
e. Field  /\  I  e.  V
)  ->  (RRfld freeLMod  I )  =  ( ( (ringLMod ` RRfld )  ^s  I )s  ( Base `  (RRfld freeLMod  I ) ) ) )
73, 6mpan 706 . . . 4  |-  ( I  e.  V  ->  (RRfld freeLMod  I )  =  ( ( (ringLMod ` RRfld )  ^s  I )s  (
Base `  (RRfld freeLMod  I ) ) ) )
8 fvex 6201 . . . . . . 7  |-  ( (subringAlg  ` RRfld
) `  RR )  e.  _V
9 rlmval 19191 . . . . . . . . . 10  |-  (ringLMod ` RRfld )  =  ( (subringAlg  ` RRfld ) `  ( Base ` RRfld ) )
10 rebase 19952 . . . . . . . . . . 11  |-  RR  =  ( Base ` RRfld )
1110fveq2i 6194 . . . . . . . . . 10  |-  ( (subringAlg  ` RRfld
) `  RR )  =  ( (subringAlg  ` RRfld ) `  ( Base ` RRfld ) )
129, 11eqtr4i 2647 . . . . . . . . 9  |-  (ringLMod ` RRfld )  =  ( (subringAlg  ` RRfld ) `  RR )
1312oveq1i 6660 . . . . . . . 8  |-  ( (ringLMod ` RRfld )  ^s  I )  =  ( ( (subringAlg  ` RRfld ) `  RR )  ^s  I )
1410ressid 15935 . . . . . . . . . 10  |-  (RRfld  e. Field  -> 
(RRfld ↾s  RR )  = RRfld )
153, 14ax-mp 5 . . . . . . . . 9  |-  (RRfld ↾s  RR )  = RRfld
16 eqidd 2623 . . . . . . . . . . 11  |-  ( T. 
->  ( (subringAlg  ` RRfld ) `  RR )  =  (
(subringAlg  ` RRfld ) `  RR ) )
1710eqimssi 3659 . . . . . . . . . . . 12  |-  RR  C_  ( Base ` RRfld )
1817a1i 11 . . . . . . . . . . 11  |-  ( T. 
->  RR  C_  ( Base ` RRfld
) )
1916, 18srasca 19181 . . . . . . . . . 10  |-  ( T. 
->  (RRfld ↾s 
RR )  =  (Scalar `  ( (subringAlg  ` RRfld ) `  RR ) ) )
2019trud 1493 . . . . . . . . 9  |-  (RRfld ↾s  RR )  =  (Scalar `  ( (subringAlg  ` RRfld
) `  RR )
)
2115, 20eqtr3i 2646 . . . . . . . 8  |- RRfld  =  (Scalar `  ( (subringAlg  ` RRfld ) `  RR ) )
2213, 21pwsval 16146 . . . . . . 7  |-  ( ( ( (subringAlg  ` RRfld ) `  RR )  e.  _V  /\  I  e.  V )  ->  ( (ringLMod ` RRfld )  ^s  I
)  =  (RRfld X_s (
I  X.  { ( (subringAlg  ` RRfld ) `  RR ) } ) ) )
238, 22mpan 706 . . . . . 6  |-  ( I  e.  V  ->  (
(ringLMod ` RRfld )  ^s  I )  =  (RRfld X_s ( I  X.  {
( (subringAlg  ` RRfld ) `  RR ) } ) ) )
2423eqcomd 2628 . . . . 5  |-  ( I  e.  V  ->  (RRfld X_s ( I  X.  { ( (subringAlg  ` RRfld ) `  RR ) } ) )  =  ( (ringLMod ` RRfld )  ^s  I
) )
252fveq2d 6195 . . . . . 6  |-  ( I  e.  V  ->  ( Base `  H )  =  ( Base `  (toCHil `  (RRfld freeLMod  I ) ) ) )
26 rrxbase.b . . . . . 6  |-  B  =  ( Base `  H
)
27 eqid 2622 . . . . . . 7  |-  (toCHil `  (RRfld freeLMod  I ) )  =  (toCHil `  (RRfld freeLMod  I ) )
2827, 5tchbas 23018 . . . . . 6  |-  ( Base `  (RRfld freeLMod  I ) )  =  ( Base `  (toCHil `  (RRfld freeLMod  I ) ) )
2925, 26, 283eqtr4g 2681 . . . . 5  |-  ( I  e.  V  ->  B  =  ( Base `  (RRfld freeLMod  I ) ) )
3024, 29oveq12d 6668 . . . 4  |-  ( I  e.  V  ->  (
(RRfld X_s ( I  X.  {
( (subringAlg  ` RRfld ) `  RR ) } ) )s  B )  =  ( ( (ringLMod ` RRfld )  ^s  I )s  (
Base `  (RRfld freeLMod  I ) ) ) )
317, 30eqtr4d 2659 . . 3  |-  ( I  e.  V  ->  (RRfld freeLMod  I )  =  ( (RRfld X_s ( I  X.  { ( (subringAlg  ` RRfld ) `  RR ) } ) )s  B ) )
3231fveq2d 6195 . 2  |-  ( I  e.  V  ->  (toCHil `  (RRfld freeLMod  I ) )  =  (toCHil `  ( (RRfld X_s ( I  X.  { ( (subringAlg  ` RRfld ) `  RR ) } ) )s  B ) ) )
332, 32eqtrd 2656 1  |-  ( I  e.  V  ->  H  =  (toCHil `  ( (RRfld X_s ( I  X.  { ( (subringAlg  ` RRfld ) `  RR ) } ) )s  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483   T. wtru 1484    e. wcel 1990   _Vcvv 3200    C_ wss 3574   {csn 4177    X. cxp 5112   ` cfv 5888  (class class class)co 6650   RRcr 9935   Basecbs 15857   ↾s cress 15858  Scalarcsca 15944   X_scprds 16106    ^s cpws 16107  Fieldcfield 18748  subringAlg csra 19168  ringLModcrglmod 19169  RRfldcrefld 19950   freeLMod cfrlm 20090  toCHilctch 22967  ℝ^crrx 23171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-field 18750  df-subrg 18778  df-sra 19172  df-rgmod 19173  df-cnfld 19747  df-refld 19951  df-dsmm 20076  df-frlm 20091  df-tng 22389  df-tch 22969  df-rrx 23173
This theorem is referenced by:  rrxip  23178
  Copyright terms: Public domain W3C validator