Proof of Theorem rrxip
| Step | Hyp | Ref
| Expression |
| 1 | | rrxval.r |
. . . 4
ℝ^   |
| 2 | | rrxbase.b |
. . . 4
     |
| 3 | 1, 2 | rrxprds 23177 |
. . 3
 toCHil  RRfld s   subringAlg RRfld      ↾s     |
| 4 | 3 | fveq2d 6195 |
. 2
        toCHil  RRfld s   subringAlg
RRfld      ↾s      |
| 5 | | eqid 2622 |
. . . 4
toCHil  RRfld s   subringAlg
RRfld      ↾s   toCHil  RRfld s   subringAlg
RRfld      ↾s    |
| 6 | | eqid 2622 |
. . . 4
    RRfld s   subringAlg RRfld      ↾s       RRfld s   subringAlg RRfld      ↾s    |
| 7 | 5, 6 | tchip 23024 |
. . 3
    RRfld s   subringAlg RRfld      ↾s      toCHil  RRfld s   subringAlg RRfld      ↾s     |
| 8 | | fvex 6201 |
. . . . . 6
     |
| 9 | 2, 8 | eqeltri 2697 |
. . . . 5
 |
| 10 | | eqid 2622 |
. . . . . 6
 RRfld s
  subringAlg RRfld      ↾s   RRfld s   subringAlg RRfld      ↾s   |
| 11 | | eqid 2622 |
. . . . . 6
   RRfld s   subringAlg
RRfld          RRfld s   subringAlg
RRfld        |
| 12 | 10, 11 | ressip 16033 |
. . . . 5
    RRfld s   subringAlg
RRfld           RRfld s   subringAlg RRfld      ↾s     |
| 13 | 9, 12 | ax-mp 5 |
. . . 4
   RRfld s   subringAlg
RRfld           RRfld s   subringAlg RRfld      ↾s    |
| 14 | | eqid 2622 |
. . . . . 6
RRfld s   subringAlg RRfld      RRfld s   subringAlg
RRfld       |
| 15 | | refld 19965 |
. . . . . . 7
RRfld Field |
| 16 | 15 | a1i 11 |
. . . . . 6
 RRfld Field |
| 17 | | snex 4908 |
. . . . . . 7
  subringAlg RRfld   
 |
| 18 | | xpexg 6960 |
. . . . . . 7
    subringAlg
RRfld        subringAlg RRfld       |
| 19 | 17, 18 | mpan2 707 |
. . . . . 6
    subringAlg RRfld       |
| 20 | | eqid 2622 |
. . . . . 6
   RRfld s   subringAlg
RRfld          RRfld s   subringAlg
RRfld        |
| 21 | | fvex 6201 |
. . . . . . . . 9
 subringAlg RRfld    |
| 22 | 21 | snnz 4309 |
. . . . . . . 8
  subringAlg RRfld   
 |
| 23 | | dmxp 5344 |
. . . . . . . 8
   subringAlg
RRfld    
  subringAlg RRfld       |
| 24 | 22, 23 | ax-mp 5 |
. . . . . . 7
   subringAlg RRfld      |
| 25 | 24 | a1i 11 |
. . . . . 6
 
  subringAlg RRfld       |
| 26 | 14, 16, 19, 20, 25, 11 | prdsip 16121 |
. . . . 5
    RRfld s   subringAlg
RRfld           RRfld s   subringAlg RRfld           RRfld s   subringAlg
RRfld       RRfld
g               subringAlg RRfld                    |
| 27 | 14, 16, 19, 20, 25 | prdsbas 16117 |
. . . . . . 7
    RRfld s   subringAlg
RRfld       
       subringAlg RRfld           |
| 28 | | eqidd 2623 |
. . . . . . . . . . 11
  subringAlg RRfld  
 subringAlg RRfld     |
| 29 | | rebase 19952 |
. . . . . . . . . . . . 13
  RRfld |
| 30 | 29 | eqimssi 3659 |
. . . . . . . . . . . 12
  RRfld |
| 31 | 30 | a1i 11 |
. . . . . . . . . . 11
   RRfld  |
| 32 | 28, 31 | srabase 19178 |
. . . . . . . . . 10
   RRfld     subringAlg RRfld      |
| 33 | 29 | a1i 11 |
. . . . . . . . . 10
   RRfld  |
| 34 | 21 | fvconst2 6469 |
. . . . . . . . . . 11
     subringAlg
RRfld         subringAlg RRfld     |
| 35 | 34 | fveq2d 6195 |
. . . . . . . . . 10
        subringAlg RRfld             subringAlg RRfld      |
| 36 | 32, 33, 35 | 3eqtr4rd 2667 |
. . . . . . . . 9
        subringAlg RRfld           |
| 37 | 36 | adantl 482 |
. . . . . . . 8
 
        subringAlg
RRfld           |
| 38 | 37 | ixpeq2dva 7923 |
. . . . . . 7
 
       subringAlg RRfld            |
| 39 | | reex 10027 |
. . . . . . . 8
 |
| 40 | | ixpconstg 7917 |
. . . . . . . 8
        |
| 41 | 39, 40 | mpan2 707 |
. . . . . . 7
 

   |
| 42 | 27, 38, 41 | 3eqtrd 2660 |
. . . . . 6
    RRfld s   subringAlg
RRfld           |
| 43 | | remulr 19957 |
. . . . . . . . . . 11
  RRfld |
| 44 | 34, 31 | sraip 19183 |
. . . . . . . . . . 11
   RRfld        subringAlg RRfld           |
| 45 | 43, 44 | syl5req 2669 |
. . . . . . . . . 10
        subringAlg RRfld          |
| 46 | 45 | oveqd 6667 |
. . . . . . . . 9
              subringAlg RRfld                           |
| 47 | 46 | mpteq2ia 4740 |
. . . . . . . 8
              subringAlg
RRfld                             |
| 48 | 47 | a1i 11 |
. . . . . . 7
               subringAlg RRfld                              |
| 49 | 48 | oveq2d 6666 |
. . . . . 6
 RRfld g               subringAlg RRfld                 RRfld g                |
| 50 | 42, 42, 49 | mpt2eq123dv 6717 |
. . . . 5
     RRfld s   subringAlg
RRfld           RRfld s   subringAlg RRfld       RRfld g               subringAlg RRfld                        RRfld g                 |
| 51 | 26, 50 | eqtrd 2656 |
. . . 4
    RRfld s   subringAlg
RRfld             RRfld g                 |
| 52 | 13, 51 | syl5eqr 2670 |
. . 3
     RRfld s   subringAlg RRfld      ↾s         RRfld g                 |
| 53 | 7, 52 | syl5eqr 2670 |
. 2
    toCHil  RRfld s   subringAlg
RRfld      ↾s          RRfld g                 |
| 54 | 4, 53 | eqtr2d 2657 |
1
       RRfld g                     |