Proof of Theorem frlmip
Step | Hyp | Ref
| Expression |
1 | | frlmphl.y |
. . . 4
 freeLMod
  |
2 | | eqid 2622 |
. . . . . . 7
 freeLMod   freeLMod   |
3 | | eqid 2622 |
. . . . . . 7
    freeLMod
      freeLMod
   |
4 | 2, 3 | frlmpws 20094 |
. . . . . 6
 
  freeLMod
   ringLMod  s  ↾s     freeLMod      |
5 | 4 | ancoms 469 |
. . . . 5
 
  freeLMod
   ringLMod  s  ↾s     freeLMod      |
6 | | frlmphl.b |
. . . . . . . . . . 11
     |
7 | 6 | ressid 15935 |
. . . . . . . . . 10
  ↾s    |
8 | | eqidd 2623 |
. . . . . . . . . . 11
  subringAlg       subringAlg        |
9 | 6 | eqimssi 3659 |
. . . . . . . . . . . 12
     |
10 | 9 | a1i 11 |
. . . . . . . . . . 11
       |
11 | 8, 10 | srasca 19181 |
. . . . . . . . . 10
  ↾s  Scalar  subringAlg
        |
12 | 7, 11 | eqtr3d 2658 |
. . . . . . . . 9
 Scalar  subringAlg         |
13 | 12 | oveq1d 6665 |
. . . . . . . 8
   s   subringAlg
         Scalar  subringAlg        s   subringAlg
          |
14 | 13 | adantl 482 |
. . . . . . 7
 
   s   subringAlg
         Scalar  subringAlg        s   subringAlg
          |
15 | | fvex 6201 |
. . . . . . . . 9
 subringAlg       |
16 | | rlmval 19191 |
. . . . . . . . . . . 12
ringLMod   subringAlg           |
17 | 6 | fveq2i 6194 |
. . . . . . . . . . . 12
 subringAlg       subringAlg           |
18 | 16, 17 | eqtr4i 2647 |
. . . . . . . . . . 11
ringLMod   subringAlg       |
19 | 18 | oveq1i 6660 |
. . . . . . . . . 10
 ringLMod  s    subringAlg      s   |
20 | | eqid 2622 |
. . . . . . . . . 10
Scalar  subringAlg       Scalar  subringAlg        |
21 | 19, 20 | pwsval 16146 |
. . . . . . . . 9
   subringAlg
    
  ringLMod  s   Scalar  subringAlg
       s   subringAlg
          |
22 | 15, 21 | mpan 706 |
. . . . . . . 8
  ringLMod  s   Scalar  subringAlg
       s   subringAlg
          |
23 | 22 | adantr 481 |
. . . . . . 7
 
  ringLMod  s   Scalar  subringAlg        s   subringAlg
          |
24 | 14, 23 | eqtr4d 2659 |
. . . . . 6
 
   s   subringAlg
         ringLMod  s    |
25 | 1 | fveq2i 6194 |
. . . . . . 7
        freeLMod    |
26 | 25 | a1i 11 |
. . . . . 6
 
         freeLMod
    |
27 | 24, 26 | oveq12d 6668 |
. . . . 5
 
    s   subringAlg         ↾s        ringLMod  s 
↾s     freeLMod      |
28 | 5, 27 | eqtr4d 2659 |
. . . 4
 
  freeLMod
    s   subringAlg
       
↾s        |
29 | 1, 28 | syl5eq 2668 |
. . 3
 
    s   subringAlg
       
↾s        |
30 | 29 | fveq2d 6195 |
. 2
 
           s   subringAlg
       
↾s         |
31 | | fvex 6201 |
. . . 4
     |
32 | | eqid 2622 |
. . . . 5
   s   subringAlg
       
↾s         s   subringAlg
       
↾s       |
33 | | eqid 2622 |
. . . . 5
     s   subringAlg               s   subringAlg
          |
34 | 32, 33 | ressip 16033 |
. . . 4
    
     s   subringAlg
               s   subringAlg
       
↾s         |
35 | 31, 34 | ax-mp 5 |
. . 3
     s   subringAlg                s   subringAlg
       
↾s        |
36 | | eqid 2622 |
. . . . 5
  s   subringAlg
          s   subringAlg
         |
37 | | simpr 477 |
. . . . 5
 
   |
38 | | snex 4908 |
. . . . . . 7
  subringAlg        |
39 | | xpexg 6960 |
. . . . . . 7
    subringAlg
          subringAlg
         |
40 | 38, 39 | mpan2 707 |
. . . . . 6
    subringAlg          |
41 | 40 | adantr 481 |
. . . . 5
 
    subringAlg
         |
42 | | eqid 2622 |
. . . . 5
     s   subringAlg
              s   subringAlg
          |
43 | 15 | snnz 4309 |
. . . . . . 7
  subringAlg        |
44 | | dmxp 5344 |
. . . . . . 7
   subringAlg
     
   subringAlg          |
45 | 43, 44 | ax-mp 5 |
. . . . . 6
   subringAlg         |
46 | 45 | a1i 11 |
. . . . 5
 
    subringAlg          |
47 | 36, 37, 41, 42, 46, 33 | prdsip 16121 |
. . . 4
 
      s   subringAlg
               s   subringAlg                s   subringAlg
          g               subringAlg                       |
48 | 36, 37, 41, 42, 46 | prdsbas 16117 |
. . . . . 6
 
      s   subringAlg
                 subringAlg              |
49 | | eqidd 2623 |
. . . . . . . . . 10
  subringAlg       subringAlg        |
50 | 9 | a1i 11 |
. . . . . . . . . 10
       |
51 | 49, 50 | srabase 19178 |
. . . . . . . . 9
         subringAlg         |
52 | 6 | a1i 11 |
. . . . . . . . 9
       |
53 | 15 | fvconst2 6469 |
. . . . . . . . . 10
     subringAlg
           subringAlg        |
54 | 53 | fveq2d 6195 |
. . . . . . . . 9
        subringAlg                subringAlg         |
55 | 51, 52, 54 | 3eqtr4rd 2667 |
. . . . . . . 8
        subringAlg              |
56 | 55 | adantl 482 |
. . . . . . 7
  

        subringAlg              |
57 | 56 | ixpeq2dva 7923 |
. . . . . 6
 
         subringAlg               |
58 | | fvex 6201 |
. . . . . . . . 9
     |
59 | 6, 58 | eqeltri 2697 |
. . . . . . . 8
 |
60 | | ixpconstg 7917 |
. . . . . . . 8
 
 
    |
61 | 59, 60 | mpan2 707 |
. . . . . . 7
 

   |
62 | 61 | adantr 481 |
. . . . . 6
 
 
    |
63 | 48, 57, 62 | 3eqtrd 2660 |
. . . . 5
 
      s   subringAlg
             |
64 | | frlmphl.t |
. . . . . . . . . 10
     |
65 | 53, 50 | sraip 19183 |
. . . . . . . . . 10
            subringAlg
             |
66 | 64, 65 | syl5req 2669 |
. . . . . . . . 9
        subringAlg             |
67 | 66 | oveqd 6667 |
. . . . . . . 8
              subringAlg                              |
68 | 67 | mpteq2ia 4740 |
. . . . . . 7
              subringAlg
                               |
69 | 68 | oveq2i 6661 |
. . . . . 6
 g 
             subringAlg                     g               |
70 | 69 | a1i 11 |
. . . . 5
 
  g               subringAlg                     g                |
71 | 63, 63, 70 | mpt2eq123dv 6717 |
. . . 4
 
       s   subringAlg                s   subringAlg
          g               subringAlg                            g                 |
72 | 47, 71 | eqtrd 2656 |
. . 3
 
      s   subringAlg
                g                 |
73 | 35, 72 | syl5eqr 2670 |
. 2
 
       s   subringAlg
       
↾s              g                 |
74 | 30, 73 | eqtr2d 2657 |
1
 
        g                     |