MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmip Structured version   Visualization version   Unicode version

Theorem frlmip 20117
Description: The inner product of a free module. (Contributed by Thierry Arnoux, 20-Jun-2019.)
Hypotheses
Ref Expression
frlmphl.y  |-  Y  =  ( R freeLMod  I )
frlmphl.b  |-  B  =  ( Base `  R
)
frlmphl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
frlmip  |-  ( ( I  e.  W  /\  R  e.  V )  ->  ( f  e.  ( B  ^m  I ) ,  g  e.  ( B  ^m  I ) 
|->  ( R  gsumg  ( x  e.  I  |->  ( ( f `  x )  .x.  (
g `  x )
) ) ) )  =  ( .i `  Y ) )
Distinct variable groups:    B, f,
g, x    f, I,
g, x    R, f,
g, x    f, V, g, x    f, W, g, x
Allowed substitution hints:    .x. ( x, f, g)    Y( x, f, g)

Proof of Theorem frlmip
StepHypRef Expression
1 frlmphl.y . . . 4  |-  Y  =  ( R freeLMod  I )
2 eqid 2622 . . . . . . 7  |-  ( R freeLMod  I )  =  ( R freeLMod  I )
3 eqid 2622 . . . . . . 7  |-  ( Base `  ( R freeLMod  I )
)  =  ( Base `  ( R freeLMod  I )
)
42, 3frlmpws 20094 . . . . . 6  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( R freeLMod  I )  =  ( ( (ringLMod `  R )  ^s  I )s  (
Base `  ( R freeLMod  I ) ) ) )
54ancoms 469 . . . . 5  |-  ( ( I  e.  W  /\  R  e.  V )  ->  ( R freeLMod  I )  =  ( ( (ringLMod `  R )  ^s  I )s  (
Base `  ( R freeLMod  I ) ) ) )
6 frlmphl.b . . . . . . . . . . 11  |-  B  =  ( Base `  R
)
76ressid 15935 . . . . . . . . . 10  |-  ( R  e.  V  ->  ( Rs  B )  =  R )
8 eqidd 2623 . . . . . . . . . . 11  |-  ( R  e.  V  ->  (
(subringAlg  `  R ) `  B )  =  ( (subringAlg  `  R ) `  B ) )
96eqimssi 3659 . . . . . . . . . . . 12  |-  B  C_  ( Base `  R )
109a1i 11 . . . . . . . . . . 11  |-  ( R  e.  V  ->  B  C_  ( Base `  R
) )
118, 10srasca 19181 . . . . . . . . . 10  |-  ( R  e.  V  ->  ( Rs  B )  =  (Scalar `  ( (subringAlg  `  R ) `
 B ) ) )
127, 11eqtr3d 2658 . . . . . . . . 9  |-  ( R  e.  V  ->  R  =  (Scalar `  ( (subringAlg  `  R ) `  B
) ) )
1312oveq1d 6665 . . . . . . . 8  |-  ( R  e.  V  ->  ( R X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) )  =  ( (Scalar `  ( (subringAlg  `  R ) `  B
) ) X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) ) )
1413adantl 482 . . . . . . 7  |-  ( ( I  e.  W  /\  R  e.  V )  ->  ( R X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) )  =  ( (Scalar `  ( (subringAlg  `  R ) `  B
) ) X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) ) )
15 fvex 6201 . . . . . . . . 9  |-  ( (subringAlg  `  R ) `  B
)  e.  _V
16 rlmval 19191 . . . . . . . . . . . 12  |-  (ringLMod `  R
)  =  ( (subringAlg  `  R ) `  ( Base `  R ) )
176fveq2i 6194 . . . . . . . . . . . 12  |-  ( (subringAlg  `  R ) `  B
)  =  ( (subringAlg  `  R ) `  ( Base `  R ) )
1816, 17eqtr4i 2647 . . . . . . . . . . 11  |-  (ringLMod `  R
)  =  ( (subringAlg  `  R ) `  B
)
1918oveq1i 6660 . . . . . . . . . 10  |-  ( (ringLMod `  R )  ^s  I )  =  ( ( (subringAlg  `  R ) `  B
)  ^s  I )
20 eqid 2622 . . . . . . . . . 10  |-  (Scalar `  ( (subringAlg  `  R ) `  B ) )  =  (Scalar `  ( (subringAlg  `  R ) `  B
) )
2119, 20pwsval 16146 . . . . . . . . 9  |-  ( ( ( (subringAlg  `  R ) `
 B )  e. 
_V  /\  I  e.  W )  ->  (
(ringLMod `  R )  ^s  I
)  =  ( (Scalar `  ( (subringAlg  `  R ) `
 B ) )
X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) ) )
2215, 21mpan 706 . . . . . . . 8  |-  ( I  e.  W  ->  (
(ringLMod `  R )  ^s  I
)  =  ( (Scalar `  ( (subringAlg  `  R ) `
 B ) )
X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) ) )
2322adantr 481 . . . . . . 7  |-  ( ( I  e.  W  /\  R  e.  V )  ->  ( (ringLMod `  R
)  ^s  I )  =  ( (Scalar `  ( (subringAlg  `  R ) `  B
) ) X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) ) )
2414, 23eqtr4d 2659 . . . . . 6  |-  ( ( I  e.  W  /\  R  e.  V )  ->  ( R X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) )  =  ( (ringLMod `  R )  ^s  I ) )
251fveq2i 6194 . . . . . . 7  |-  ( Base `  Y )  =  (
Base `  ( R freeLMod  I ) )
2625a1i 11 . . . . . 6  |-  ( ( I  e.  W  /\  R  e.  V )  ->  ( Base `  Y
)  =  ( Base `  ( R freeLMod  I )
) )
2724, 26oveq12d 6668 . . . . 5  |-  ( ( I  e.  W  /\  R  e.  V )  ->  ( ( R X_s (
I  X.  { ( (subringAlg  `  R ) `  B ) } ) )s  ( Base `  Y
) )  =  ( ( (ringLMod `  R
)  ^s  I )s  ( Base `  ( R freeLMod  I ) ) ) )
285, 27eqtr4d 2659 . . . 4  |-  ( ( I  e.  W  /\  R  e.  V )  ->  ( R freeLMod  I )  =  ( ( R
X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) )s  ( Base `  Y
) ) )
291, 28syl5eq 2668 . . 3  |-  ( ( I  e.  W  /\  R  e.  V )  ->  Y  =  ( ( R X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) )s  ( Base `  Y
) ) )
3029fveq2d 6195 . 2  |-  ( ( I  e.  W  /\  R  e.  V )  ->  ( .i `  Y
)  =  ( .i
`  ( ( R
X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) )s  ( Base `  Y
) ) ) )
31 fvex 6201 . . . 4  |-  ( Base `  Y )  e.  _V
32 eqid 2622 . . . . 5  |-  ( ( R X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) )s  ( Base `  Y
) )  =  ( ( R X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) )s  ( Base `  Y
) )
33 eqid 2622 . . . . 5  |-  ( .i
`  ( R X_s (
I  X.  { ( (subringAlg  `  R ) `  B ) } ) ) )  =  ( .i `  ( R
X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) ) )
3432, 33ressip 16033 . . . 4  |-  ( (
Base `  Y )  e.  _V  ->  ( .i `  ( R X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) ) )  =  ( .i `  (
( R X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) )s  ( Base `  Y
) ) ) )
3531, 34ax-mp 5 . . 3  |-  ( .i
`  ( R X_s (
I  X.  { ( (subringAlg  `  R ) `  B ) } ) ) )  =  ( .i `  ( ( R X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) )s  ( Base `  Y
) ) )
36 eqid 2622 . . . . 5  |-  ( R
X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) )  =  ( R X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) )
37 simpr 477 . . . . 5  |-  ( ( I  e.  W  /\  R  e.  V )  ->  R  e.  V )
38 snex 4908 . . . . . . 7  |-  { ( (subringAlg  `  R ) `  B ) }  e.  _V
39 xpexg 6960 . . . . . . 7  |-  ( ( I  e.  W  /\  { ( (subringAlg  `  R ) `
 B ) }  e.  _V )  -> 
( I  X.  {
( (subringAlg  `  R ) `
 B ) } )  e.  _V )
4038, 39mpan2 707 . . . . . 6  |-  ( I  e.  W  ->  (
I  X.  { ( (subringAlg  `  R ) `  B ) } )  e.  _V )
4140adantr 481 . . . . 5  |-  ( ( I  e.  W  /\  R  e.  V )  ->  ( I  X.  {
( (subringAlg  `  R ) `
 B ) } )  e.  _V )
42 eqid 2622 . . . . 5  |-  ( Base `  ( R X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) ) )  =  ( Base `  ( R X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) ) )
4315snnz 4309 . . . . . . 7  |-  { ( (subringAlg  `  R ) `  B ) }  =/=  (/)
44 dmxp 5344 . . . . . . 7  |-  ( { ( (subringAlg  `  R ) `
 B ) }  =/=  (/)  ->  dom  ( I  X.  { ( (subringAlg  `  R ) `  B
) } )  =  I )
4543, 44ax-mp 5 . . . . . 6  |-  dom  (
I  X.  { ( (subringAlg  `  R ) `  B ) } )  =  I
4645a1i 11 . . . . 5  |-  ( ( I  e.  W  /\  R  e.  V )  ->  dom  ( I  X.  { ( (subringAlg  `  R
) `  B ) } )  =  I )
4736, 37, 41, 42, 46, 33prdsip 16121 . . . 4  |-  ( ( I  e.  W  /\  R  e.  V )  ->  ( .i `  ( R X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) ) )  =  ( f  e.  (
Base `  ( R X_s ( I  X.  { ( (subringAlg  `  R ) `  B ) } ) ) ) ,  g  e.  ( Base `  ( R X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) ) )  |->  ( R  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( ( I  X.  { ( (subringAlg  `  R ) `  B
) } ) `  x ) ) ( g `  x ) ) ) ) ) )
4836, 37, 41, 42, 46prdsbas 16117 . . . . . 6  |-  ( ( I  e.  W  /\  R  e.  V )  ->  ( Base `  ( R X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) ) )  = 
X_ x  e.  I 
( Base `  ( (
I  X.  { ( (subringAlg  `  R ) `  B ) } ) `
 x ) ) )
49 eqidd 2623 . . . . . . . . . 10  |-  ( x  e.  I  ->  (
(subringAlg  `  R ) `  B )  =  ( (subringAlg  `  R ) `  B ) )
509a1i 11 . . . . . . . . . 10  |-  ( x  e.  I  ->  B  C_  ( Base `  R
) )
5149, 50srabase 19178 . . . . . . . . 9  |-  ( x  e.  I  ->  ( Base `  R )  =  ( Base `  (
(subringAlg  `  R ) `  B ) ) )
526a1i 11 . . . . . . . . 9  |-  ( x  e.  I  ->  B  =  ( Base `  R
) )
5315fvconst2 6469 . . . . . . . . . 10  |-  ( x  e.  I  ->  (
( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) `  x )  =  ( (subringAlg  `  R
) `  B )
)
5453fveq2d 6195 . . . . . . . . 9  |-  ( x  e.  I  ->  ( Base `  ( ( I  X.  { ( (subringAlg  `  R ) `  B
) } ) `  x ) )  =  ( Base `  (
(subringAlg  `  R ) `  B ) ) )
5551, 52, 543eqtr4rd 2667 . . . . . . . 8  |-  ( x  e.  I  ->  ( Base `  ( ( I  X.  { ( (subringAlg  `  R ) `  B
) } ) `  x ) )  =  B )
5655adantl 482 . . . . . . 7  |-  ( ( ( I  e.  W  /\  R  e.  V
)  /\  x  e.  I )  ->  ( Base `  ( ( I  X.  { ( (subringAlg  `  R ) `  B
) } ) `  x ) )  =  B )
5756ixpeq2dva 7923 . . . . . 6  |-  ( ( I  e.  W  /\  R  e.  V )  -> 
X_ x  e.  I 
( Base `  ( (
I  X.  { ( (subringAlg  `  R ) `  B ) } ) `
 x ) )  =  X_ x  e.  I  B )
58 fvex 6201 . . . . . . . . 9  |-  ( Base `  R )  e.  _V
596, 58eqeltri 2697 . . . . . . . 8  |-  B  e. 
_V
60 ixpconstg 7917 . . . . . . . 8  |-  ( ( I  e.  W  /\  B  e.  _V )  -> 
X_ x  e.  I  B  =  ( B  ^m  I ) )
6159, 60mpan2 707 . . . . . . 7  |-  ( I  e.  W  ->  X_ x  e.  I  B  =  ( B  ^m  I ) )
6261adantr 481 . . . . . 6  |-  ( ( I  e.  W  /\  R  e.  V )  -> 
X_ x  e.  I  B  =  ( B  ^m  I ) )
6348, 57, 623eqtrd 2660 . . . . 5  |-  ( ( I  e.  W  /\  R  e.  V )  ->  ( Base `  ( R X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) ) )  =  ( B  ^m  I
) )
64 frlmphl.t . . . . . . . . . 10  |-  .x.  =  ( .r `  R )
6553, 50sraip 19183 . . . . . . . . . 10  |-  ( x  e.  I  ->  ( .r `  R )  =  ( .i `  (
( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) `  x ) ) )
6664, 65syl5req 2669 . . . . . . . . 9  |-  ( x  e.  I  ->  ( .i `  ( ( I  X.  { ( (subringAlg  `  R ) `  B
) } ) `  x ) )  = 
.x.  )
6766oveqd 6667 . . . . . . . 8  |-  ( x  e.  I  ->  (
( f `  x
) ( .i `  ( ( I  X.  { ( (subringAlg  `  R
) `  B ) } ) `  x
) ) ( g `
 x ) )  =  ( ( f `
 x )  .x.  ( g `  x
) ) )
6867mpteq2ia 4740 . . . . . . 7  |-  ( x  e.  I  |->  ( ( f `  x ) ( .i `  (
( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) `  x ) ) ( g `  x ) ) )  =  ( x  e.  I  |->  ( ( f `
 x )  .x.  ( g `  x
) ) )
6968oveq2i 6661 . . . . . 6  |-  ( R 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( ( I  X.  { ( (subringAlg  `  R ) `  B
) } ) `  x ) ) ( g `  x ) ) ) )  =  ( R  gsumg  ( x  e.  I  |->  ( ( f `  x )  .x.  (
g `  x )
) ) )
7069a1i 11 . . . . 5  |-  ( ( I  e.  W  /\  R  e.  V )  ->  ( R  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( ( I  X.  { ( (subringAlg  `  R ) `  B
) } ) `  x ) ) ( g `  x ) ) ) )  =  ( R  gsumg  ( x  e.  I  |->  ( ( f `  x )  .x.  (
g `  x )
) ) ) )
7163, 63, 70mpt2eq123dv 6717 . . . 4  |-  ( ( I  e.  W  /\  R  e.  V )  ->  ( f  e.  (
Base `  ( R X_s ( I  X.  { ( (subringAlg  `  R ) `  B ) } ) ) ) ,  g  e.  ( Base `  ( R X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) ) )  |->  ( R  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( ( I  X.  { ( (subringAlg  `  R ) `  B
) } ) `  x ) ) ( g `  x ) ) ) ) )  =  ( f  e.  ( B  ^m  I
) ,  g  e.  ( B  ^m  I
)  |->  ( R  gsumg  ( x  e.  I  |->  ( ( f `  x ) 
.x.  ( g `  x ) ) ) ) ) )
7247, 71eqtrd 2656 . . 3  |-  ( ( I  e.  W  /\  R  e.  V )  ->  ( .i `  ( R X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) ) )  =  ( f  e.  ( B  ^m  I ) ,  g  e.  ( B  ^m  I ) 
|->  ( R  gsumg  ( x  e.  I  |->  ( ( f `  x )  .x.  (
g `  x )
) ) ) ) )
7335, 72syl5eqr 2670 . 2  |-  ( ( I  e.  W  /\  R  e.  V )  ->  ( .i `  (
( R X_s ( I  X.  {
( (subringAlg  `  R ) `
 B ) } ) )s  ( Base `  Y
) ) )  =  ( f  e.  ( B  ^m  I ) ,  g  e.  ( B  ^m  I ) 
|->  ( R  gsumg  ( x  e.  I  |->  ( ( f `  x )  .x.  (
g `  x )
) ) ) ) )
7430, 73eqtr2d 2657 1  |-  ( ( I  e.  W  /\  R  e.  V )  ->  ( f  e.  ( B  ^m  I ) ,  g  e.  ( B  ^m  I ) 
|->  ( R  gsumg  ( x  e.  I  |->  ( ( f `  x )  .x.  (
g `  x )
) ) ) )  =  ( .i `  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {csn 4177    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857   X_cixp 7908   Basecbs 15857   ↾s cress 15858   .rcmulr 15942  Scalarcsca 15944   .icip 15946    gsumg cgsu 16101   X_scprds 16106    ^s cpws 16107  subringAlg csra 19168  ringLModcrglmod 19169   freeLMod cfrlm 20090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-prds 16108  df-pws 16110  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091
This theorem is referenced by:  frlmipval  20118  frlmphl  20120
  Copyright terms: Public domain W3C validator